10 resultados para ITERATIVE ALGORITHMS
em Massachusetts Institute of Technology
Resumo:
Recent developments in the area of reinforcement learning have yielded a number of new algorithms for the prediction and control of Markovian environments. These algorithms, including the TD(lambda) algorithm of Sutton (1988) and the Q-learning algorithm of Watkins (1989), can be motivated heuristically as approximations to dynamic programming (DP). In this paper we provide a rigorous proof of convergence of these DP-based learning algorithms by relating them to the powerful techniques of stochastic approximation theory via a new convergence theorem. The theorem establishes a general class of convergent algorithms to which both TD(lambda) and Q-learning belong.
Resumo:
In this text, we present two stereo-based head tracking techniques along with a fast 3D model acquisition system. The first tracking technique is a robust implementation of stereo-based head tracking designed for interactive environments with uncontrolled lighting. We integrate fast face detection and drift reduction algorithms with a gradient-based stereo rigid motion tracking technique. Our system can automatically segment and track a user's head under large rotation and illumination variations. Precision and usability of this approach are compared with previous tracking methods for cursor control and target selection in both desktop and interactive room environments. The second tracking technique is designed to improve the robustness of head pose tracking for fast movements. Our iterative hybrid tracker combines constraints from the ICP (Iterative Closest Point) algorithm and normal flow constraint. This new technique is more precise for small movements and noisy depth than ICP alone, and more robust for large movements than the normal flow constraint alone. We present experiments which test the accuracy of our approach on sequences of real and synthetic stereo images. The 3D model acquisition system we present quickly aligns intensity and depth images, and reconstructs a textured 3D mesh. 3D views are registered with shape alignment based on our iterative hybrid tracker. We reconstruct the 3D model using a new Cubic Ray Projection merging algorithm which takes advantage of a novel data structure: the linked voxel space. We present experiments to test the accuracy of our approach on 3D face modelling using real-time stereo images.
Resumo:
Early and intermediate vision algorithms, such as smoothing and discontinuity detection, are often implemented on general-purpose serial, and more recently, parallel computers. Special-purpose hardware implementations of low-level vision algorithms may be needed to achieve real-time processing. This memo reviews and analyzes some hardware implementations of low-level vision algorithms. Two types of hardware implementations are considered: the digital signal processing chips of Ruetz (and Broderson) and the analog VLSI circuits of Carver Mead. The advantages and disadvantages of these two approaches for producing a general, real-time vision system are considered.
Resumo:
This thesis investigates a new approach to lattice basis reduction suggested by M. Seysen. Seysen's algorithm attempts to globally reduce a lattice basis, whereas the Lenstra, Lenstra, Lovasz (LLL) family of reduction algorithms concentrates on local reductions. We show that Seysen's algorithm is well suited for reducing certain classes of lattice bases, and often requires much less time in practice than the LLL algorithm. We also demonstrate how Seysen's algorithm for basis reduction may be applied to subset sum problems. Seysen's technique, used in combination with the LLL algorithm, and other heuristics, enables us to solve a much larger class of subset sum problems than was previously possible.
Resumo:
A study is made of the recognition and transformation of figures by iterative arrays of finite state automata. A figure is a finite rectangular two-dimensional array of symbols. The iterative arrays considered are also finite, rectangular, and two-dimensional. The automata comprising any given array are called cells and are assumed to be isomorphic and to operate synchronously with the state of a cell at time t+1 being a function of the states of it and its four nearest neighbors at time t. At time t=0 each cell is placed in one of a fixed number of initial states. The pattern of initial states thus introduced represents the figure to be processed. The resulting sequence of array states represents a computation based on the input figure. If one waits for a specially designated cell to indicate acceptance or rejection of the figure, the array is said to be working on a recognition problem. If one waits for the array to come to a stable configuration representing an output figure, the array is said to be working on a transformation problem.
Resumo:
This thesis develops a model for the topological structure of situations. In this model, the topological structure of space is altered by the presence or absence of boundaries, such as those at the edges of objects. This allows the intuitive meaning of topological concepts such as region connectivity, function continuity, and preservation of topological structure to be modeled using the standard mathematical definitions. The thesis shows that these concepts are important in a wide range of artificial intelligence problems, including low-level vision, high-level vision, natural language semantics, and high-level reasoning.
Resumo:
The work described in this thesis began as an inquiry into the nature and use of optimization programs based on "genetic algorithms." That inquiry led, eventually, to three powerful heuristics that are broadly applicable in gradient-ascent programs: First, remember the locations of local maxima and restart the optimization program at a place distant from previously located local maxima. Second, adjust the size of probing steps to suit the local nature of the terrain, shrinking when probes do poorly and growing when probes do well. And third, keep track of the directions of recent successes, so as to probe preferentially in the direction of most rapid ascent. These algorithms lie at the core of a novel optimization program that illustrates the power to be had from deploying them together. The efficacy of this program is demonstrated on several test problems selected from a variety of fields, including De Jong's famous test-problem suite, the traveling salesman problem, the problem of coordinate registration for image guided surgery, the energy minimization problem for determining the shape of organic molecules, and the problem of assessing the structure of sedimentary deposits using seismic data.
Resumo:
The Support Vector Machine (SVM) is a new and very promising classification technique developed by Vapnik and his group at AT&T Bell Labs. This new learning algorithm can be seen as an alternative training technique for Polynomial, Radial Basis Function and Multi-Layer Perceptron classifiers. An interesting property of this approach is that it is an approximate implementation of the Structural Risk Minimization (SRM) induction principle. The derivation of Support Vector Machines, its relationship with SRM, and its geometrical insight, are discussed in this paper. Training a SVM is equivalent to solve a quadratic programming problem with linear and box constraints in a number of variables equal to the number of data points. When the number of data points exceeds few thousands the problem is very challenging, because the quadratic form is completely dense, so the memory needed to store the problem grows with the square of the number of data points. Therefore, training problems arising in some real applications with large data sets are impossible to load into memory, and cannot be solved using standard non-linear constrained optimization algorithms. We present a decomposition algorithm that can be used to train SVM's over large data sets. The main idea behind the decomposition is the iterative solution of sub-problems and the evaluation of, and also establish the stopping criteria for the algorithm. We present previous approaches, as well as results and important details of our implementation of the algorithm using a second-order variant of the Reduced Gradient Method as the solver of the sub-problems. As an application of SVM's, we present preliminary results we obtained applying SVM to the problem of detecting frontal human faces in real images.
Resumo:
Bibliography: p. 22-24.
Resumo:
We study the preconditioning of symmetric indefinite linear systems of equations that arise in interior point solution of linear optimization problems. The preconditioning method that we study exploits the block structure of the augmented matrix to design a similar block structure preconditioner to improve the spectral properties of the resulting preconditioned matrix so as to improve the convergence rate of the iterative solution of the system. We also propose a two-phase algorithm that takes advantage of the spectral properties of the transformed matrix to solve for the Newton directions in the interior-point method. Numerical experiments have been performed on some LP test problems in the NETLIB suite to demonstrate the potential of the preconditioning method discussed.