5 resultados para INTERNAL FAULT

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the size of digital systems increases, the mean time between single component failures diminishes. To avoid component related failures, large computers must be fault-tolerant. In this paper, we focus on methods for achieving a high degree of fault-tolerance in multistage routing networks. We describe a multipath scheme for providing end-to-end fault-tolerance on large networks. The scheme improves routing performance while keeping network latency low. We also describe the novel routing component, RN1, which implements this scheme, showing how it can be the basic building block for fault-tolerant multistage routing networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes the design and implementation of an integrated circuit and associated packaging to be used as the building block for the data routing network of a large scale shared memory multiprocessor system. A general purpose multiprocessor depends on high-bandwidth, low-latency communications between computing elements. This thesis describes the design and construction of RN1, a novel self-routing, enhanced crossbar switch as a CMOS VLSI chip. This chip provides the basic building block for a scalable pipelined routing network with byte-wide data channels. A series of RN1 chips can be cascaded with no additional internal network components to form a multistage fault-tolerant routing switch. The chip is designed to operate at clock frequencies up to 100Mhz using Hewlett-Packard's HP34 $1.2\\mu$ process. This aggressive performance goal demands that special attention be paid to optimization of the logic architecture and circuit design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We wish to design a diagnostic for a device from knowledge of its structure and function. the diagnostic should achieve both coverage of the faults that can occur in the device, and should strive to achieve specificity in its diagnosis when it detects a fault. A system is described that uses a simple model of hardware structure and function, representing the device in terms of its internal primitive functions and connections. The system designs a diagnostic in three steps. First, an extension of path sensitization is used to design a test for each of the connections in teh device. Next, the resulting tests are improved by increasing their specificity. Finally the tests are ordered so that each relies on the fewest possible connections. We describe an implementation of this system and show examples of the results for some simple devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a simple method for internal camera calibration for computer vision. This method is based on tracking image features through a sequence of images while the camera undergoes pure rotation. The location of the features relative to the camera or to each other need not be known and therefore this method can be used both for laboratory calibration and for self calibration in autonomous robots working in unstructured environments. A second method of calibration is also presented. This method uses simple geometric objects such as spheres and straight lines to The camera parameters. Calibration is performed using both methods and the results compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central challenge in face recognition lies in understanding the role different facial features play in our judgments of identity. Notable in this regard are the relative contributions of the internal (eyes, nose and mouth) and external (hair and jaw-line) features. Past studies that have investigated this issue have typically used high-resolution images or good-quality line drawings as facial stimuli. The results obtained are therefore most relevant for understanding the identification of faces at close range. However, given that real-world viewing conditions are rarely optimal, it is also important to know how image degradations, such as loss of resolution caused by large viewing distances, influence our ability to use internal and external features. Here, we report experiments designed to address this issue. Our data characterize how the relative contributions of internal and external features change as a function of image resolution. While we replicated results of previous studies that have shown internal features of familiar faces to be more useful for recognition than external features at high resolution, we found that the two feature sets reverse in importance as resolution decreases. These results suggest that the visual system uses a highly non-linear cue-fusion strategy in combining internal and external features along the dimension of image resolution and that the configural cues that relate the two feature sets play an important role in judgments of facial identity.