1 resultado para Hysteretic Down-Sampling
em Massachusetts Institute of Technology
Filtro por publicador
- Aquatic Commons (47)
- ARCA - Repositório Institucional da FIOCRUZ (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (13)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (9)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (3)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (20)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (1)
- Boston University Digital Common (5)
- Brock University, Canada (13)
- CaltechTHESIS (7)
- Cambridge University Engineering Department Publications Database (63)
- CentAUR: Central Archive University of Reading - UK (107)
- Center for Jewish History Digital Collections (7)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (45)
- Cochin University of Science & Technology (CUSAT), India (5)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (8)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (19)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (10)
- Indian Institute of Science - Bangalore - Índia (76)
- Instituto Politécnico do Porto, Portugal (3)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (107)
- National Center for Biotechnology Information - NCBI (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (35)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (130)
- Queensland University of Technology - ePrints Archive (148)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (7)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- RIBERDIS - Repositorio IBERoamericano sobre DIScapacidad - Centro Español de Documentación sobre Discapacidad (CEDD) (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (5)
- Universidad Autónoma de Nuevo León, Mexico (7)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (7)
- Universidad Politécnica Salesiana Ecuador (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade dos Açores - Portugal (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (5)
- Université de Montréal, Canada (9)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- WestminsterResearch - UK (4)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
We present a new method for estimating the expected return of a POMDP from experience. The estimator does not assume any knowle ge of the POMDP and allows the experience to be gathered with an arbitrary set of policies. The return is estimated for any new policy of the POMDP. We motivate the estimator from function-approximation and importance sampling points-of-view and derive its theoretical properties. Although the estimator is biased, it has low variance and the bias is often irrelevant when the estimator is used for pair-wise comparisons.We conclude by extending the estimator to policies with memory and compare its performance in a greedy search algorithm to the REINFORCE algorithm showing an order of magnitude reduction in the number of trials required.