3 resultados para Hybridized Evolutionary Algorithms

em Massachusetts Institute of Technology


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Evolutionary algorithms are a common tool in engineering and in the study of natural evolution. Here we take their use in a new direction by showing how they can be made to implement a universal computer. We consider populations of individuals with genes whose values are the variables of interest. By allowing them to interact with one another in a specified environment with limited resources, we demonstrate the ability to construct any arbitrary logic circuit. We explore models based on the limits of small and large populations, and show examples of such a system in action, implementing a simple logic circuit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early and intermediate vision algorithms, such as smoothing and discontinuity detection, are often implemented on general-purpose serial, and more recently, parallel computers. Special-purpose hardware implementations of low-level vision algorithms may be needed to achieve real-time processing. This memo reviews and analyzes some hardware implementations of low-level vision algorithms. Two types of hardware implementations are considered: the digital signal processing chips of Ruetz (and Broderson) and the analog VLSI circuits of Carver Mead. The advantages and disadvantages of these two approaches for producing a general, real-time vision system are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates a new approach to lattice basis reduction suggested by M. Seysen. Seysen's algorithm attempts to globally reduce a lattice basis, whereas the Lenstra, Lenstra, Lovasz (LLL) family of reduction algorithms concentrates on local reductions. We show that Seysen's algorithm is well suited for reducing certain classes of lattice bases, and often requires much less time in practice than the LLL algorithm. We also demonstrate how Seysen's algorithm for basis reduction may be applied to subset sum problems. Seysen's technique, used in combination with the LLL algorithm, and other heuristics, enables us to solve a much larger class of subset sum problems than was previously possible.