16 resultados para Humanoid Robots

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Babies are born with simple manipulation capabilities such as reflexes to perceived stimuli. Initial discoveries by babies are accidental until they become coordinated and curious enough to actively investigate their surroundings. This thesis explores the development of such primitive learning systems using an embodied light-weight hand with three fingers and a thumb. It is self-contained having four motors and 36 exteroceptor and proprioceptor sensors controlled by an on-palm microcontroller. Primitive manipulation is learned from sensory inputs using competitive learning, back-propagation algorithm and reinforcement learning strategies. This hand will be used for a humanoid being developed at the MIT Artificial Intelligence Laboratory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a perceptual system for a humanoid robot that integrates abilities such as object localization and recognition with the deeper developmental machinery required to forge those competences out of raw physical experiences. It shows that a robotic platform can build up and maintain a system for object localization, segmentation, and recognition, starting from very little. What the robot starts with is a direct solution to achieving figure/ground separation: it simply 'pokes around' in a region of visual ambiguity and watches what happens. If the arm passes through an area, that area is recognized as free space. If the arm collides with an object, causing it to move, the robot can use that motion to segment the object from the background. Once the robot can acquire reliable segmented views of objects, it learns from them, and from then on recognizes and segments those objects without further contact. Both low-level and high-level visual features can also be learned in this way, and examples are presented for both: orientation detection and affordance recognition, respectively. The motivation for this work is simple. Training on large corpora of annotated real-world data has proven crucial for creating robust solutions to perceptual problems such as speech recognition and face detection. But the powerful tools used during training of such systems are typically stripped away at deployment. Ideally they should remain, particularly for unstable tasks such as object detection, where the set of objects needed in a task tomorrow might be different from the set of objects needed today. The key limiting factor is access to training data, but as this thesis shows, that need not be a problem on a robotic platform that can actively probe its environment, and carry out experiments to resolve ambiguity. This work is an instance of a general approach to learning a new perceptual judgment: find special situations in which the perceptual judgment is easy and study these situations to find correlated features that can be observed more generally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research on autonomous intelligent systems has focused on how robots can robustly carry out missions in uncertain and harsh environments with very little or no human intervention. Robotic execution languages such as RAPs, ESL, and TDL improve robustness by managing functionally redundant procedures for achieving goals. The model-based programming approach extends this by guaranteeing correctness of execution through pre-planning of non-deterministic timed threads of activities. Executing model-based programs effectively on distributed autonomous platforms requires distributing this pre-planning process. This thesis presents a distributed planner for modelbased programs whose planning and execution is distributed among agents with widely varying levels of processor power and memory resources. We make two key contributions. First, we reformulate a model-based program, which describes cooperative activities, into a hierarchical dynamic simple temporal network. This enables efficient distributed coordination of robots and supports deployment on heterogeneous robots. Second, we introduce a distributed temporal planner, called DTP, which solves hierarchical dynamic simple temporal networks with the assistance of the distributed Bellman-Ford shortest path algorithm. The implementation of DTP has been demonstrated successfully on a wide range of randomly generated examples and on a pursuer-evader challenge problem in simulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humans can effortlessly manipulate objects in their hands, dexterously sliding and twisting them within their grasp. Robots, however, have none of these capabilities, they simply grasp objects rigidly in their end effectors. To investigate this common form of human manipulation, an analysis of controlled slipping of a grasped object within a robot hand was performed. The Salisbury robot hand demonstrated many of these controlled slipping techniques, illustrating many results of this analysis. First, the possible slipping motions were found as a function of the location, orientation, and types of contact between the hand and object. Second, for a given grasp, the contact types were determined as a function of the grasping force and the external forces on the object. Finally, by changing the grasping force, the robot modified the constraints on the object and affect controlled slipping slipping motions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research aims to understand the fundamental dynamic behavior of servo-controlled machinery in response to various types of sensory feedback. As an example of such a system, we study robot force control, a scheme which promises to greatly expand the capabilities of industrial robots by allowing manipulators to interact with uncertain and dynamic tasks. Dynamic models are developed which allow the effects of actuator dynamics, structural flexibility, and workpiece interaction to be explored in the frequency and time domains. The models are used first to explain the causes of robot force control instability, and then to find methods of improving this performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We are investigating how to program robots so that they learn from experience. Our goal is to develop principled methods of learning that can improve a robot's performance of a wide range of dynamic tasks. We have developed task-level learning that successfully improves a robot's performance of two complex tasks, ball-throwing and juggling. With task- level learning, a robot practices a task, monitors its own performance, and uses that experience to adjust its task-level commands. This learning method serves to complement other approaches, such as model calibration, for improving robot performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Robots must act purposefully and successfully in an uncertain world. Sensory information is inaccurate or noisy, actions may have a range of effects, and the robot's environment is only partially and imprecisely modeled. This thesis introduces active randomization by a robot, both in selecting actions to execute and in focusing on sensory information to interpret, as a basic tool for overcoming uncertainty. An example of randomization is given by the strategy of shaking a bin containing a part in order to orient the part in a desired stable state with some high probability. Another example consists of first using reliable sensory information to bring two parts close together, then relying on short random motions to actually mate the two parts, once the part motions lie below the available sensing resolution. Further examples include tapping parts that are tightly wedged, twirling gears before trying to mesh them, and vibrating parts to facilitate a mating operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a simple method for internal camera calibration for computer vision. This method is based on tracking image features through a sequence of images while the camera undergoes pure rotation. The location of the features relative to the camera or to each other need not be known and therefore this method can be used both for laboratory calibration and for self calibration in autonomous robots working in unstructured environments. A second method of calibration is also presented. This method uses simple geometric objects such as spheres and straight lines to The camera parameters. Calibration is performed using both methods and the results compared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report addresses the problem of achieving cooperation within small- to medium- sized teams of heterogeneous mobile robots. I describe a software architecture I have developed, called ALLIANCE, that facilitates robust, fault tolerant, reliable, and adaptive cooperative control. In addition, an extended version of ALLIANCE, called L-ALLIANCE, is described, which incorporates a dynamic parameter update mechanism that allows teams of mobile robots to improve the efficiency of their mission performance through learning. A number of experimental results of implementing these architectures on both physical and simulated mobile robot teams are described. In addition, this report presents the results of studies of a number of issues in mobile robot cooperation, including fault tolerant cooperative control, adaptive action selection, distributed control, robot awareness of team member actions, improving efficiency through learning, inter-robot communication, action recognition, and local versus global control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The control of aerial gymnastic maneuvers is challenging because these maneuvers frequently involve complex rotational motion and because the performer has limited control of the maneuver during flight. A performer can influence a maneuver using a sequence of limb movements during flight. However, the same sequence may not produce reliable performances in the presence of off-nominal conditions. How do people compensate for variations in performance to reliably produce aerial maneuvers? In this report I explore the role that passive dynamic stability may play in making the performance of aerial maneuvers simple and reliable. I present a control strategy comprised of active and passive components for performing robot front somersaults in the laboratory. I show that passive dynamics can neutrally stabilize the layout somersault which involves an "inherently unstable" rotation about the intermediate principal axis. And I show that a strategy that uses open loop joint torques plus passive dynamics leads to more reliable 1 1/2 twisting front somersaults in simulation than a strategy that uses prescribed limb motion. Results are presented from laboratory experiments on gymnastic robots, from dynamic simulation of humans and robots, and from linear stability analyses of these systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transformation from high level task specification to low level motion control is a fundamental issue in sensorimotor control in animals and robots. This thesis develops a control scheme called virtual model control which addresses this issue. Virtual model control is a motion control language which uses simulations of imagined mechanical components to create forces, which are applied through joint torques, thereby creating the illusion that the components are connected to the robot. Due to the intuitive nature of this technique, designing a virtual model controller requires the same skills as designing the mechanism itself. A high level control system can be cascaded with the low level virtual model controller to modulate the parameters of the virtual mechanisms. Discrete commands from the high level controller would then result in fluid motion. An extension of Gardner's Partitioned Actuator Set Control method is developed. This method allows for the specification of constraints on the generalized forces which each serial path of a parallel mechanism can apply. Virtual model control has been applied to a bipedal walking robot. A simple algorithm utilizing a simple set of virtual components has successfully compelled the robot to walk eight consecutive steps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since robots are typically designed with an individual actuator at each joint, the control of these systems is often difficult and non-intuitive. This thesis explains a more intuitive control scheme called Virtual Model Control. This thesis also demonstrates the simplicity and ease of this control method by using it to control a simulated walking hexapod. Virtual Model Control uses imagined mechanical components to create virtual forces, which are applied through the joint torques of real actuators. This method produces a straightforward means of controlling joint torques to produce a desired robot behavior. Due to the intuitive nature of this control scheme, the design of a virtual model controller is similar to the design of a controller with basic mechanical components. The ease of this control scheme facilitates the use of a high level control system which can be used above the low level virtual model controllers to modulate the parameters of the imaginary mechanical components. In order to apply Virtual Model Control to parallel mechanisms, a solution to the force distribution problem is required. This thesis uses an extension of Gardner`s Partitioned Force Control method which allows for the specification of constrained degrees of freedom. This virtual model control technique was applied to a simulated hexapod robot. Although the hexapod is a highly non-linear, parallel mechanism, the virtual models allowed text-book control solutions to be used while the robot was walking. Using a simple linear control law, the robot walked while simultaneously balancing a pendulum and tracking an object.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As AI has begun to reach out beyond its symbolic, objectivist roots into the embodied, experientialist realm, many projects are exploring different aspects of creating machines which interact with and respond to the world as humans do. Techniques for visual processing, object recognition, emotional response, gesture production and recognition, etc., are necessary components of a complete humanoid robot. However, most projects invariably concentrate on developing a few of these individual components, neglecting the issue of how all of these pieces would eventually fit together. The focus of the work in this dissertation is on creating a framework into which such specific competencies can be embedded, in a way that they can interact with each other and build layers of new functionality. To be of any practical value, such a framework must satisfy the real-world constraints of functioning in real-time with noisy sensors and actuators. The humanoid robot Cog provides an unapologetically adequate platform from which to take on such a challenge. This work makes three contributions to embodied AI. First, it offers a general-purpose architecture for developing behavior-based systems distributed over networks of PC's. Second, it provides a motor-control system that simulates several biological features which impact the development of motor behavior. Third, it develops a framework for a system which enables a robot to learn new behaviors via interacting with itself and the outside world. A few basic functional modules are built into this framework, enough to demonstrate the robot learning some very simple behaviors taught by a human trainer. A primary motivation for this project is the notion that it is practically impossible to build an "intelligent" machine unless it is designed partly to build itself. This work is a proof-of-concept of such an approach to integrating multiple perceptual and motor systems into a complete learning agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fast simulated annealing algorithm is developed for automatic object recognition. The normalized correlation coefficient is used as a measure of the match between a hypothesized object and an image. Templates are generated on-line during the search by transforming model images. Simulated annealing reduces the search time by orders of magnitude with respect to an exhaustive search. The algorithm is applied to the problem of how landmarks, for example, traffic signs, can be recognized by an autonomous vehicle or a navigating robot. The algorithm works well in noisy, real-world images of complicated scenes for model images with high information content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capability of estimating the walking direction of people would be useful in many applications such as those involving autonomous cars and robots. We introduce an approach for estimating the walking direction of people from images, based on learning the correct classification of a still image by using SVMs. We find that the performance of the system can be improved by classifying each image of a walking sequence and combining the outputs of the classifier. Experiments were performed to evaluate our system and estimate the trade-off between number of images in walking sequences and performance.