1 resultado para Hudson, Damián
em Massachusetts Institute of Technology
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Applied Math and Science Education Repository - Washington - USA (2)
- Aquatic Commons (23)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (15)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- Biblioteca Digital de la Universidad Católica Argentina (3)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Biblioteca Digital Loyola - Universidad de Deusto (1)
- Biodiversity Heritage Library, United States (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (9)
- Boston University Digital Common (2)
- Brock University, Canada (12)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (94)
- Center for Jewish History Digital Collections (4)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (5)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (15)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (5)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (2)
- Indian Institute of Science - Bangalore - Índia (3)
- Infoteca EMBRAPA (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (9)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (11)
- Ministerio de Cultura, Spain (66)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (7)
- Publishing Network for Geoscientific & Environmental Data (99)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (120)
- Queensland University of Technology - ePrints Archive (222)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (32)
- Research Open Access Repository of the University of East London. (1)
- School of Medicine, Washington University, United States (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad Autónoma de Nuevo León, Mexico (5)
- Universidad del Rosario, Colombia (23)
- Universidad Politécnica de Madrid (1)
- Universidade Federal do Pará (7)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universitat de Girona, Spain (2)
- Université de Montréal, Canada (5)
- University of Michigan (80)
- University of Queensland eSpace - Australia (2)
- USA Library of Congress (1)
- WestminsterResearch - UK (8)
Resumo:
We present the results of an implemented system for learning structural prototypes from grey-scale images. We show how to divide an object into subparts and how to encode the properties of these subparts and the relations between them. We discuss the importance of hierarchy and grouping in representing objects and show how a notion of visual similarities can be embedded in the description language. Finally we exhibit a learning algorithm that forms class models from the descriptions produced and uses these models to recognize new members of the class.