3 resultados para Host range analysis
em Massachusetts Institute of Technology
Resumo:
It has been widely known that a significant part of the bits are useless or even unused during the program execution. Bit-width analysis targets at finding the minimum bits needed for each variable in the program, which ensures the execution correctness and resources saving. In this paper, we proposed a static analysis method for bit-widths in general applications, which approximates conservatively at compile time and is independent of runtime conditions. While most related work focus on integer applications, our method is also tailored and applicable to floating point variables, which could be extended to transform floating point number into fixed point numbers together with precision analysis. We used more precise representations for data value ranges of both scalar and array variables. Element level analysis is carried out for arrays. We also suggested an alternative for the standard fixed-point iterations in bi-directional range analysis. These techniques are implemented on the Trimaran compiler structure and tested on a set of benchmarks to show the results.
Resumo:
This thesis describes a representation of gait appearance for the purpose of person identification and classification. This gait representation is based on simple localized image features such as moments extracted from orthogonal view video silhouettes of human walking motion. A suite of time-integration methods, spanning a range of coarseness of time aggregation and modeling of feature distributions, are applied to these image features to create a suite of gait sequence representations. Despite their simplicity, the resulting feature vectors contain enough information to perform well on human identification and gender classification tasks. We demonstrate the accuracy of recognition on gait video sequences collected over different days and times and under varying lighting environments. Each of the integration methods are investigated for their advantages and disadvantages. An improved gait representation is built based on our experiences with the initial set of gait representations. In addition, we show gender classification results using our gait appearance features, the effect of our heuristic feature selection method, and the significance of individual features.
Resumo:
Integration of inputs by cortical neurons provides the basis for the complex information processing performed in the cerebral cortex. Here, we propose a new analytic framework for understanding integration within cortical neuronal receptive fields. Based on the synaptic organization of cortex, we argue that neuronal integration is a systems--level process better studied in terms of local cortical circuitry than at the level of single neurons, and we present a method for constructing self-contained modules which capture (nonlinear) local circuit interactions. In this framework, receptive field elements naturally have dual (rather than the traditional unitary influence since they drive both excitatory and inhibitory cortical neurons. This vector-based analysis, in contrast to scalarsapproaches, greatly simplifies integration by permitting linear summation of inputs from both "classical" and "extraclassical" receptive field regions. We illustrate this by explaining two complex visual cortical phenomena, which are incompatible with scalar notions of neuronal integration.