5 resultados para Hilbert Fourteenth Problem
em Massachusetts Institute of Technology
Resumo:
This paper considers the problem of language change. Linguists must explain not only how languages are learned but also how and why they have evolved along certain trajectories and not others. While the language learning problem has focused on the behavior of individuals and how they acquire a particular grammar from a class of grammars ${cal G}$, here we consider a population of such learners and investigate the emergent, global population characteristics of linguistic communities over several generations. We argue that language change follows logically from specific assumptions about grammatical theories and learning paradigms. In particular, we are able to transform parameterized theories and memoryless acquisition algorithms into grammatical dynamical systems, whose evolution depicts a population's evolving linguistic composition. We investigate the linguistic and computational consequences of this model, showing that the formalization allows one to ask questions about diachronic that one otherwise could not ask, such as the effect of varying initial conditions on the resulting diachronic trajectories. From a more programmatic perspective, we give an example of how the dynamical system model for language change can serve as a way to distinguish among alternative grammatical theories, introducing a formal diachronic adequacy criterion for linguistic theories.
Resumo:
This paper presents a computation of the $V_gamma$ dimension for regression in bounded subspaces of Reproducing Kernel Hilbert Spaces (RKHS) for the Support Vector Machine (SVM) regression $epsilon$-insensitive loss function, and general $L_p$ loss functions. Finiteness of the RV_gamma$ dimension is shown, which also proves uniform convergence in probability for regression machines in RKHS subspaces that use the $L_epsilon$ or general $L_p$ loss functions. This paper presenta a novel proof of this result also for the case that a bias is added to the functions in the RKHS.
Resumo:
In the first part of this paper we show a similarity between the principle of Structural Risk Minimization Principle (SRM) (Vapnik, 1982) and the idea of Sparse Approximation, as defined in (Chen, Donoho and Saunders, 1995) and Olshausen and Field (1996). Then we focus on two specific (approximate) implementations of SRM and Sparse Approximation, which have been used to solve the problem of function approximation. For SRM we consider the Support Vector Machine technique proposed by V. Vapnik and his team at AT&T Bell Labs, and for Sparse Approximation we consider a modification of the Basis Pursuit De-Noising algorithm proposed by Chen, Donoho and Saunders (1995). We show that, under certain conditions, these two techniques are equivalent: they give the same solution and they require the solution of the same quadratic programming problem.
Resumo:
This report outlines the problem of intelligent failure recovery in a problem-solver for electrical design. We want our problem solver to learn as much as it can from its mistakes. Thus we cast the engineering design process on terms of Problem Solving by Debugging Almost-Right Plans, a paradigm for automatic problem solving based on the belief that creation and removal of "bugs" is an unavoidable part of the process of solving a complex problem. The process of localization and removal of bugs called for by the PSBDARP theory requires an approach to engineering analysis in which every result has a justification which describes the exact set of assumptions it depends upon. We have developed a program based on Analysis by Propagation of Constraints which can explain the basis of its deductions. In addition to being useful to a PSBDARP designer, these justifications are used in Dependency-Directed Backtracking to limit the combinatorial search in the analysis routines. Although the research we will describe is explicitly about electrical circuits, we believe that similar principles and methods are employed by other kinds of engineers, including computer programmers.