4 resultados para Heuristic procedures

em Massachusetts Institute of Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a system for the computer understanding of English. The system answers questions, executes commands, and accepts information in normal English dialog. It uses semantic information and context to understand discourse and to disambiguate sentences. It combines a complete syntactic analysis of each sentence with a "heuristic understander" which uses different kinds of information about a sentence, other parts of the discourse, and general information about the world in deciding what the sentence means. It is based on the belief that a computer cannot deal reasonably with language unless it can "understand" the subject it is discussing. The program is given a detailed model of the knowledge needed by a simple robot having only a hand and an eye. We can give it instructions to manipulate toy objects, interrogate it about the scene, and give it information it will use in deduction. In addition to knowing the properties of toy objects, the program has a simple model of its own mentality. It can remember and discuss its plans and actions as well as carry them out. It enters into a dialog with a person, responding to English sentences with actions and English replies, and asking for clarification when its heuristic programs cannot understand a sentence through use of context and physical knowledge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computer program, named ADEPT (A Distinctly Empirical Prover of Theorems), has been written which proves theorems taken from the abstract theory of groups. Its operation is basically heuristic, incorporating many of the techniques of the human mathematician in a "natural" way. This program has proved almost 100 theorems, as well as serving as a vehicle for testing and evaluating special-purpose heuristics. A detailed description of the program is supplemented by accounts of its performance on a number of theorems, thus providing many insights into the particular problems inherent in the design of a procedure capable of proving a variety of theorems from this domain. Suggestions have been formulated for further efforts along these lines, and comparisons with related work previously reported in the literature have been made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes an implemented system called NODDY for acquiring procedures from examples presented by a teacher. Acquiring procedures form examples involves several different generalization tasks. Generalization is an underconstrained task, and the main issue of machine learning is how to deal with this underconstraint. The thesis presents two principles for constraining generalization on which NODDY is based. The first principle is to exploit domain based constraints. NODDY demonstrated how such constraints can be used both to reduce the space of possible generalizations to manageable size, and how to generate negative examples out of positive examples to further constrain the generalization. The second principle is to avoid spurious generalizations by requiring justification before adopting a generalization. NODDY demonstrates several different ways of justifying a generalization and proposes a way of ordering and searching a space of candidate generalizations based on how much evidence would be required to justify each generalization. Acquiring procedures also involves three types of constructive generalizations: inferring loops (a kind of group), inferring complex relations and state variables, and inferring predicates. NODDY demonstrates three constructive generalization methods for these kinds of generalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report introduces TRANSLUCENT PROCEDURES as a new mechanism for implementing behavioral abstractions. Like an ordinary procedure, a translucent procedure can be invoked, and thus provides an obvious way to capture a BEHAVIOR. Translucent procedures, like ordinary procedures, can be manipulated as first-class objects and combined using functional composition. But unlike ordinary procedures, translucent procedures have structure that can be examined in well-specified non-destructive ways, without invoking the procedure.