1 resultado para HSM CAR PED
em Massachusetts Institute of Technology
Filtro por publicador
- Repository Napier (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (15)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (17)
- Aston University Research Archive (15)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital de la Universidad Católica Argentina (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (5)
- Bibloteca do Senado Federal do Brasil (1)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (19)
- Brock University, Canada (9)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (5)
- CentAUR: Central Archive University of Reading - UK (9)
- Center for Jewish History Digital Collections (22)
- Chapman University Digital Commons - CA - USA (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (6)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (6)
- Greenwich Academic Literature Archive - UK (3)
- Harvard University (7)
- Helda - Digital Repository of University of Helsinki (17)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Indian Institute of Science - Bangalore - Índia (29)
- Infoteca EMBRAPA (1)
- Instituto Politécnico de Bragança (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (19)
- National Center for Biotechnology Information - NCBI (4)
- Publishing Network for Geoscientific & Environmental Data (24)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (8)
- Queensland University of Technology - ePrints Archive (312)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (30)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (6)
- Repositorio Institucional UNISALLE - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Scientific Open-access Literature Archive and Repository (1)
- South Carolina State Documents Depository (1)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (18)
- Universidade de Lisboa - Repositório Aberto (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (3)
- University of Michigan (247)
- University of Queensland eSpace - Australia (9)
Resumo:
This paper describes a general, trainable architecture for object detection that has previously been applied to face and peoplesdetection with a new application to car detection in static images. Our technique is a learning based approach that uses a set of labeled training data from which an implicit model of an object class -- here, cars -- is learned. Instead of pixel representations that may be noisy and therefore not provide a compact representation for learning, our training images are transformed from pixel space to that of Haar wavelets that respond to local, oriented, multiscale intensity differences. These feature vectors are then used to train a support vector machine classifier. The detection of cars in images is an important step in applications such as traffic monitoring, driver assistance systems, and surveillance, among others. We show several examples of car detection on out-of-sample images and show an ROC curve that highlights the performance of our system.