5 resultados para Group Rings
em Massachusetts Institute of Technology
Resumo:
Amorphous computing is the study of programming ultra-scale computing environments of smart sensors and actuators cite{white-paper}. The individual elements are identical, asynchronous, randomly placed, embedded and communicate locally via wireless broadcast. Aggregating the processors into groups is a useful paradigm for programming an amorphous computer because groups can be used for specialization, increased robustness, and efficient resource allocation. This paper presents a new algorithm, called the clubs algorithm, for efficiently aggregating processors into groups in an amorphous computer, in time proportional to the local density of processors. The clubs algorithm is well-suited to the unique characteristics of an amorphous computer. In addition, the algorithm derives two properties from the physical embedding of the amorphous computer: an upper bound on the number of groups formed and a constant upper bound on the density of groups. The clubs algorithm can also be extended to find the maximal independent set (MIS) and $Delta + 1$ vertex coloring in an amorphous computer in $O(log N)$ rounds, where $N$ is the total number of elements and $Delta$ is the maximum degree.
Resumo:
This Report contains the proceedings of the Fourth Phantom Users Group Workshop contains 17 papers presented October 9-12, 1999 at MIT Endicott House in Dedham Massachusetts. The workshop included sessions on, Tools for Programmers, Dynamic Environments, Perception and Cognition, Haptic Connections, Collision Detection / Collision Response, Medical and Seismic Applications, and Haptics Going Mainstream. The proceedings include papers that cover a variety of subjects in computer haptics including rendering, contact determination, development libraries, and applications in medicine, path planning, data interaction and training.
Resumo:
On October 19-22, 1997 the Second PHANToM Users Group Workshop was held at the MIT Endicott House in Dedham, Massachusetts. Designed as a forum for sharing results and insights, the workshop was attended by more than 60 participants from 7 countries. These proceedings report on workshop presentations in diverse areas including rigid and compliant rendering, tool kits, development environments, techniques for scientific data visualization, multi-modal issues and a programming tutorial.
Resumo:
These proceedings summarize the results of the First PHANToM User's Group Workshop held September 27-30, 1996 MIT. The goal of the workshop was to bring together a group of active users of the PHANToM Haptic Interface to discuss the scientific and engineering challenges involved in bringing haptics into widespread use, and to explore the future possibilities of this exciting technology. With over 50 attendees and 25 presentations the workshop provided the first large forum for users of a common haptic interface to share results and engage in collaborative discussions. Short papers from the presenters are contained herein and address the following topics: Research Effort Overviews, Displays and Effects, Applications in Teleoperation and Training, Tools for Simulated Worlds and, Data Visualization.
Resumo:
A computer program, named ADEPT (A Distinctly Empirical Prover of Theorems), has been written which proves theorems taken from the abstract theory of groups. Its operation is basically heuristic, incorporating many of the techniques of the human mathematician in a "natural" way. This program has proved almost 100 theorems, as well as serving as a vehicle for testing and evaluating special-purpose heuristics. A detailed description of the program is supplemented by accounts of its performance on a number of theorems, thus providing many insights into the particular problems inherent in the design of a procedure capable of proving a variety of theorems from this domain. Suggestions have been formulated for further efforts along these lines, and comparisons with related work previously reported in the literature have been made.