1 resultado para Gray matter
em Massachusetts Institute of Technology
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (5)
- Aquatic Commons (37)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (8)
- Aston University Research Archive (9)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (37)
- Brock University, Canada (6)
- CaltechTHESIS (6)
- Cambridge University Engineering Department Publications Database (31)
- CentAUR: Central Archive University of Reading - UK (4)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (157)
- Cochin University of Science & Technology (CUSAT), India (7)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Cornell: DigitalCommons@ILR (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- DigitalCommons@The Texas Medical Center (9)
- Diposit Digital de la UB - Universidade de Barcelona (19)
- Duke University (10)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (7)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (38)
- Greenwich Academic Literature Archive - UK (5)
- Helda - Digital Repository of University of Helsinki (21)
- Indian Institute of Science - Bangalore - Índia (58)
- Instituto Politécnico do Porto, Portugal (4)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (7)
- National Center for Biotechnology Information - NCBI (7)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (37)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (128)
- Queensland University of Technology - ePrints Archive (173)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad Nacional Agraria (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (24)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- South Carolina State Documents Depository (2)
- Universidad Autónoma de Nuevo León, Mexico (3)
- Universidad del Rosario, Colombia (7)
- Universidad Politécnica de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (10)
- Université de Lausanne, Switzerland (5)
- Université de Montréal, Canada (13)
- University of Queensland eSpace - Australia (4)
- University of Southampton, United Kingdom (3)
- WestminsterResearch - UK (2)
Resumo:
We present a trainable system for detecting frontal and near-frontal views of faces in still gray images using Support Vector Machines (SVMs). We first consider the problem of detecting the whole face pattern by a single SVM classifer. In this context we compare different types of image features, present and evaluate a new method for reducing the number of features and discuss practical issues concerning the parameterization of SVMs and the selection of training data. The second part of the paper describes a component-based method for face detection consisting of a two-level hierarchy of SVM classifers. On the first level, component classifers independently detect components of a face, such as the eyes, the nose, and the mouth. On the second level, a single classifer checks if the geometrical configuration of the detected components in the image matches a geometrical model of a face.