2 resultados para Graph-theoretical descriptors
em Massachusetts Institute of Technology
Resumo:
Biological systems exhibit rich and complex behavior through the orchestrated interplay of a large array of components. It is hypothesized that separable subsystems with some degree of functional autonomy exist; deciphering their independent behavior and functionality would greatly facilitate understanding the system as a whole. Discovering and analyzing such subsystems are hence pivotal problems in the quest to gain a quantitative understanding of complex biological systems. In this work, using approaches from machine learning, physics and graph theory, methods for the identification and analysis of such subsystems were developed. A novel methodology, based on a recent machine learning algorithm known as non-negative matrix factorization (NMF), was developed to discover such subsystems in a set of large-scale gene expression data. This set of subsystems was then used to predict functional relationships between genes, and this approach was shown to score significantly higher than conventional methods when benchmarking them against existing databases. Moreover, a mathematical treatment was developed to treat simple network subsystems based only on their topology (independent of particular parameter values). Application to a problem of experimental interest demonstrated the need for extentions to the conventional model to fully explain the experimental data. Finally, the notion of a subsystem was evaluated from a topological perspective. A number of different protein networks were examined to analyze their topological properties with respect to separability, seeking to find separable subsystems. These networks were shown to exhibit separability in a nonintuitive fashion, while the separable subsystems were of strong biological significance. It was demonstrated that the separability property found was not due to incomplete or biased data, but is likely to reflect biological structure.
Resumo:
Local descriptors are increasingly used for the task of object recognition because of their perceived robustness with respect to occlusions and to global geometrical deformations. We propose a performance criterion for a local descriptor based on the tradeoff between selectivity and invariance. In this paper, we evaluate several local descriptors with respect to selectivity and invariance. The descriptors that we evaluated are Gaussian derivatives up to the third order, gray image patches, and Laplacian-based descriptors with either three scales or one scale filters. We compare selectivity and invariance to several affine changes such as rotation, scale, brightness, and viewpoint. Comparisons have been made keeping the dimensionality of the descriptors roughly constant. The overall results indicate a good performance by the descriptor based on a set of oriented Gaussian filters. It is interesting that oriented receptive fields similar to the Gaussian derivatives as well as receptive fields similar to the Laplacian are found in primate visual cortex.