6 resultados para Geometry, Plane

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the general case, a trilinear relationship between three perspective views is shown to exist. The trilinearity result is shown to be of much practical use in visual recognition by alignment --- yielding a direct method that cuts through the computations of camera transformation, scene structure and epipolar geometry. The proof of the central result may be of further interest as it demonstrates certain regularities across homographies of the plane and introduces new view invariants. Experiments on simulated and real image data were conducted, including a comparative analysis with epipolar intersection and the linear combination methods, with results indicating a greater degree of robustness in practice and a higher level of performance in re-projection tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an affine framework for perspective views, captured by a single extremely simple equation based on a viewer-centered invariant we call "relative affine structure". Via a number of corollaries of our main results we show that our framework unifies previous work --- including Euclidean, projective and affine --- in a natural and simple way, and introduces new, extremely simple, algorithms for the tasks of reconstruction from multiple views, recognition by alignment, and certain image coding applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of synthesizing stable grasps on arbitrary planar polygons. Each finger is a virtual spring whose stiffnes and compression can be programmed. The contacts between the finger tips and the object are point contacts without friction. We prove that all force-closure grasps can be made stable, and it costs 0(n) time to synthesize a set of n virtual springs such that a given force closure grasp is stable. We can also choose the compliance center and the stiffness matrix of the grasp, and so choose the compliant behavior of the grasped object about its equilibrium. The planning and execution of grasps and assembly operations become easier and less sensitive to errors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Passive monitoring of large sites typically requires coordination between multiple cameras, which in turn requires methods for automatically relating events between distributed cameras. This paper tackles the problem of self-calibration of multiple cameras which are very far apart, using feature correspondences to determine the camera geometry. The key problem is finding such correspondences. Since the camera geometry and photometric characteristics vary considerably between images, one cannot use brightness and/or proximity constraints. Instead we apply planar geometric constraints to moving objects in the scene in order to align the scene"s ground plane across multiple views. We do not assume synchronized cameras, and we show that enforcing geometric constraints enables us to align the tracking data in time. Once we have recovered the homography which aligns the planar structure in the scene, we can compute from the homography matrix the 3D position of the plane and the relative camera positions. This in turn enables us to recover a homography matrix which maps the images to an overhead view. We demonstrate this technique in two settings: a controlled lab setting where we test the effects of errors in internal camera calibration, and an uncontrolled, outdoor setting in which the full procedure is applied to external camera calibration and ground plane recovery. In spite of noise in the internal camera parameters and image data, the system successfully recovers both planar structure and relative camera positions in both settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional models which contain both geometry and texture have numerous applications such as urban planning, physical simulation, and virtual environments. A major focus of computer vision (and recently graphics) research is the automatic recovery of three-dimensional models from two-dimensional images. After many years of research this goal is yet to be achieved. Most practical modeling systems require substantial human input and unlike automatic systems are not scalable. This thesis presents a novel method for automatically recovering dense surface patches using large sets (1000's) of calibrated images taken from arbitrary positions within the scene. Physical instruments, such as Global Positioning System (GPS), inertial sensors, and inclinometers, are used to estimate the position and orientation of each image. Essentially, the problem is to find corresponding points in each of the images. Once a correspondence has been established, calculating its three-dimensional position is simply a matter of geometry. Long baseline images improve the accuracy. Short baseline images and the large number of images greatly simplifies the correspondence problem. The initial stage of the algorithm is completely local and scales linearly with the number of images. Subsequent stages are global in nature, exploit geometric constraints, and scale quadratically with the complexity of the underlying scene. We describe techniques for: 1) detecting and localizing surface patches; 2) refining camera calibration estimates and rejecting false positive surfels; and 3) grouping surface patches into surfaces and growing the surface along a two-dimensional manifold. We also discuss a method for producing high quality, textured three-dimensional models from these surfaces. Some of the most important characteristics of this approach are that it: 1) uses and refines noisy calibration estimates; 2) compensates for large variations in illumination; 3) tolerates significant soft occlusion (e.g. tree branches); and 4) associates, at a fundamental level, an estimated normal (i.e. no frontal-planar assumption) and texture with each surface patch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The report addresses the problem of visual recognition under two sources of variability: geometric and photometric. The geometric deals with the relation between 3D objects and their views under orthographic and perspective projection. The photometric deals with the relation between 3D matte objects and their images under changing illumination conditions. Taken together, an alignment-based method is presented for recognizing objects viewed from arbitrary viewing positions and illuminated by arbitrary settings of light sources.