2 resultados para Generational succession

em Massachusetts Institute of Technology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Program design is an area of programming that can benefit significantly from machine-mediated assistance. A proposed tool, called the Design Apprentice (DA), can assist a programmer in the detailed design of programs. The DA supports software reuse through a library of commonly-used algorithmic fragments, or cliches, that codifies standard programming. The cliche library enables the programmer to describe the design of a program concisely. The DA can detect some kinds of inconsistencies and incompleteness in program descriptions. It automates detailed design by automatically selecting appropriate algorithms and data structures. It supports the evolution of program designs by keeping explicit dependencies between the design decisions made. These capabilities of the DA are underlaid bya model of programming, called programming by successive elaboration, which mimics the way programmers interact. Programming by successive elaboration is characterized by the use of breadth-first exposition of layered program descriptions and the successive modifications of descriptions. A scenario is presented to illustrate the concept of the DA. Technques for automating the detailed design process are described. A framework is given in which designs are incrementally augmented and modified by a succession of design steps. A library of cliches and a suite of design steps needed to support the scenario are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report addresses the problem of fault tolerance to system failures for database systems that are to run on highly concurrent computers. It assumes that, in general, an application may have a wide distribution in the lifetimes of its transactions. Logging remains the method of choice for ensuring fault tolerance. Generational garbage collection techniques manage the limited disk space reserved for log information; this technique does not require periodic checkpoints and is well suited for applications with a broad range of transaction lifetimes. An arbitrarily large collection of parallel log streams provide the necessary disk bandwidth.