1 resultado para Futures Studies methods
em Massachusetts Institute of Technology
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Academic Archive On-line (Stockholm University; Sweden) (3)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (19)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (11)
- Archive of European Integration (8)
- Aston University Research Archive (5)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (2)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (27)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (52)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (6)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (63)
- Brock University, Canada (7)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (78)
- Central European University - Research Support Scheme (1)
- Cochin University of Science & Technology (CUSAT), India (68)
- Collection Of Biostatistics Research Archive (4)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (24)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (12)
- Dalarna University College Electronic Archive (5)
- Digital Commons - Michigan Tech (4)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (3)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (72)
- DRUM (Digital Repository at the University of Maryland) (1)
- Hospitais da Universidade de Coimbra (1)
- Instituto Politécnico do Porto, Portugal (2)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (3)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (1)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (12)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional dos Hospitais da Universidade Coimbra (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (104)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (18)
- School of Medicine, Washington University, United States (4)
- Scielo Saúde Pública - SP (58)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (9)
- Universidad Politécnica de Madrid (2)
- Universidade do Minho (5)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (2)
- Université de Lausanne, Switzerland (100)
- Université de Montréal, Canada (23)
- University of Michigan (10)
- University of Queensland eSpace - Australia (36)
- University of Southampton, United Kingdom (1)
- University of Washington (3)
- WestminsterResearch - UK (2)
Resumo:
There has been recent interest in using temporal difference learning methods to attack problems of prediction and control. While these algorithms have been brought to bear on many problems, they remain poorly understood. It is the purpose of this thesis to further explore these algorithms, presenting a framework for viewing them and raising a number of practical issues and exploring those issues in the context of several case studies. This includes applying the TD(lambda) algorithm to: 1) learning to play tic-tac-toe from the outcome of self-play and of play against a perfectly-playing opponent and 2) learning simple one-dimensional segmentation tasks.