1 resultado para Functions of complex variables.
em Massachusetts Institute of Technology
Filtro por publicador
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (6)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (36)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (17)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (14)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (42)
- Boston University Digital Common (1)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (14)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (55)
- CentAUR: Central Archive University of Reading - UK (37)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (29)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (10)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons - Montana Tech (2)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (14)
- Duke University (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- Helda - Digital Repository of University of Helsinki (28)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Indian Institute of Science - Bangalore - Índia (53)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico do Porto, Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (34)
- Nottingham eTheses (2)
- Open University Netherlands (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (8)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (7)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (80)
- Queensland University of Technology - ePrints Archive (97)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (43)
- Repositorio Institucional Universidad de Medellín (1)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (3)
- Scielo España (1)
- Universidad de Alicante (12)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (24)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (2)
- Universidade Federal do Pará (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (7)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Michigan (64)
- University of Queensland eSpace - Australia (26)
- University of Southampton, United Kingdom (1)
- University of Washington (2)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Learning an input-output mapping from a set of examples, of the type that many neural networks have been constructed to perform, can be regarded as synthesizing an approximation of a multi-dimensional function, that is solving the problem of hypersurface reconstruction. From this point of view, this form of learning is closely related to classical approximation techniques, such as generalized splines and regularization theory. This paper considers the problems of an exact representation and, in more detail, of the approximation of linear and nolinear mappings in terms of simpler functions of fewer variables. Kolmogorov's theorem concerning the representation of functions of several variables in terms of functions of one variable turns out to be almost irrelevant in the context of networks for learning. We develop a theoretical framework for approximation based on regularization techniques that leads to a class of three-layer networks that we call Generalized Radial Basis Functions (GRBF), since they are mathematically related to the well-known Radial Basis Functions, mainly used for strict interpolation tasks. GRBF networks are not only equivalent to generalized splines, but are also closely related to pattern recognition methods such as Parzen windows and potential functions and to several neural network algorithms, such as Kanerva's associative memory, backpropagation and Kohonen's topology preserving map. They also have an interesting interpretation in terms of prototypes that are synthesized and optimally combined during the learning stage. The paper introduces several extensions and applications of the technique and discusses intriguing analogies with neurobiological data.