7 resultados para Friction gripper

em Massachusetts Institute of Technology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the problem of synthesizing stable grasps on arbitrary planar polygons. Each finger is a virtual spring whose stiffnes and compression can be programmed. The contacts between the finger tips and the object are point contacts without friction. We prove that all force-closure grasps can be made stable, and it costs 0(n) time to synthesize a set of n virtual springs such that a given force closure grasp is stable. We can also choose the compliance center and the stiffness matrix of the grasp, and so choose the compliant behavior of the grasped object about its equilibrium. The planning and execution of grasps and assembly operations become easier and less sensitive to errors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In my research, I have performed an extensive experimental investigation of harmonic-drive properties such as stiffness, friction, and kinematic error. From my experimental results, I have found that these properties can be sharply non-linear and highly dependent on operating conditions. Due to the complex interaction of these poorly behaved transmission properties, dynamic response measurements showed surprisingly agitated behavior, especially around system resonance. Theoretical models developed to mimic the observed response illustrated that non-linear frictional effects cannot be ignored in any accurate harmonic-drive representation. Additionally, if behavior around system resonance must be replicated, kinematic error and transmission compliance as well as frictional dissipation from gear-tooth rubbing must all be incorporated into the model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous research in force control has focused on the choice of appropriate servo implementation without corresponding regard to the choice of mechanical hardware. This report analyzes the effect of mechanical properties such as contact compliance, actuator-to-joint compliance, torque ripple, and highly nonlinear dry friction in the transmission mechanisms of a manipulator. A set of requisites for high performance then guides the development of mechanical-design and servo strategies for improved performance. A single-degree-of-freedom transmission testbed was constructed that confirms the predicted effect of Coulomb friction on robustness; design and construction of a cable-driven, four-degree-of- freedom, "whole-arm" manipulator illustrates the recommended design strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamic systems which undergo rapid motion can excite natural frequencies that lead to residual vibration at the end of motion. This work presents a method to shape force profiles that reduce excitation energy at the natural frequencies in order to reduce residual vibration for fast moves. Such profiles are developed using a ramped sinusoid function and its harmonics, choosing coefficients to reduce spectral energy at the natural frequencies of the system. To improve robustness with respect to parameter uncertainty, spectral energy is reduced for a range of frequencies surrounding the nominal natural frequency. An additional set of versine profiles are also constructed to permit motion at constant speed for velocity-limited systems. These shaped force profiles are incorporated into a simple closed-loop system with position and velocity feedback. The force input is doubly integrated to generate a shaped position reference for the controller to follow. This control scheme is evaluated on the MIT Cartesian Robot. The shaped inputs generate motions with minimum residual vibration when actuator saturation is avoided. Feedback control compensates for the effect of friction Using only a knowledge of the natural frequencies of the system to shape the force inputs, vibration can also be attenuated in modes which vibrate in directions other than the motion direction. When moving several axes, the use of shaped inputs allows minimum residual vibration even when the natural frequencies are dynamically changing by a limited amount.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis addresses the problem of synthesizing grasps that are force-closure and stable. The synthesis of force-closure grasps constructs independent regions of contact for the fingertips, such that the motion of the grasped object is totally constrained. The synthesis of stable grasps constructs virtual springs at the contacts, such that the grasped object is stable, and has a desired stiffness matrix about its stable equilibrium. A grasp on an object is force-closure if and only if we can exert, through the set of contacts, arbitrary forces and moments on the object. So force-closure implies equilibrium exists because zero forces and moment is spanned. In the reverse direction, we prove that a non-marginal equilibrium grasp is also a force-closure grasp, if it has at least two point contacts with friction in 2D, or two soft-finger contacts or three hard-finger contacts in 3D. Next, we prove that all force-closure grasps can be made stable, by using either active or passive springs at the contacts. The thesis develops a simple relation between the stability and stiffness of the grasp and the spatial configuration of the virtual springs at the contacts. The stiffness of the grasp depends also on whether the points of contact stick, or slide without friction on straight or curved surfaces of the object. The thesis presents fast and simple algorithms for directly constructing stable fore-closure grasps based on the shape of the grasped object. The formal framework of force-closure and stable grasps provides a partial explanation to why we stably grasp objects to easily, and to why our fingers are better soft than hard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objects move, collide, flow, bend, heat up, cool down, stretch, compress and boil. These and other things that cause changes in objects over time are intuitively characterized as processes. To understand common sense physical reasoning and make programs that interact with the physical world as well as people do we must understand qualitative reasoning about processes, when they will occur, their effects, and when they will stop. Qualitative Process theory defines a simple notion of physical process that appears useful as a language in which to write dynamical theories. Reasoning about processes also motivates a new qualitative representation for quantity in terms of inequalities, called quantity space. This report describes the basic concepts of Qualitative Process theory, several different kinds of reasoning that can be performed with them, and discusses its impact on other issues in common sense reasoning about the physical world, such as causal reasoning and measurement interpretation. Several extended examples illustrate the utility of the theory, including figuring out that a boiler can blow up, that an oscillator with friction will eventually stop, and how to say that you can pull with a string but not push with it. This report also describes GIZMO, an implemented computer program which uses Qualitative Process theory to make predictions and interpret simple measurements. The represnetations and algorithms used in GIZMO are described in detail, and illustrated using several examples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Robots must successfully plan and execute tasks in the presence of uncertainty. Uncertainty arises from errors in modeling, sensing, and control. Planning in the presence of uncertainty constitutes one facet of the general motion planning problem in robotics. This problem is concerned with the automatic synthesis of motion strategies from high level task specification and geometric models of environments. In order to develop successful motion strategies, it is necessary to understand the effect of uncertainty on the geometry of object interactions. Object interactions, both static and dynamic, may be represented in geometrical terms. This thesis investigates geometrical tools for modeling and overcoming uncertainty. The thesis describes an algorithm for computing backprojections o desired task configurations. Task goals and motion states are specified in terms of a moving object's configuration space. Backprojections specify regions in configuration space from which particular motions are guaranteed to accomplish a desired task. The backprojection algorithm considers surfaces in configuration space that facilitate sliding towards the goal, while avoiding surfaces on which motions may prematurely halt. In executing a motion for a backprojection region, a plan executor must be able to recognize that a desired task has been accomplished. Since sensors are subject to uncertainty, recognition of task success is not always possible. The thesis considers the structure of backprojection regions and of task goals that ensures goal recognizability. The thesis also develops a representation of friction in configuration space, in terms of a friction cone analogous to the real space friction cone. The friction cone provides the backprojection algorithm with a geometrical tool for determining points at which motions may halt.