4 resultados para Flexible links

em Massachusetts Institute of Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This robot has low natural frequencies of vibration. Insights into the problems of designing joint and link flexibility are discussed. The robot has three flexible rotary actuators and two flexible, interchangeable links, and is controlled by three independent processors on a VMEbus. Results from experiments on the control of residual vibration for different types of robot motion are presented. Impulse prefiltering and slowly accelerating moves are compared and shown to be effective at reducing residual vibration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Residual vibrations degrade the performance of many systems. Due to the lightweight and flexible nature of space structures, controlling residual vibrations is especially difficult. Also, systems such as the Space Shuttle remote Manipulator System have frequencies that vary significantly based upon configuration and loading. Recently, a technique of minimizing vibrations in flexible structures by command input shaping was developed. This document presents research completed in developing a simple, closed- form method of calculating input shaping sequences for two-mode systems and a system to adapt the command input shaping technique to known changes in system frequency about the workspace. The new techniques were tested on a three-link, flexible manipulator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Future NASA plans to launch large space strucutres solicit the need for effective vibration control schemes which can solve the unique problems associated with unwanted residual vibration in flexible spacecraft. In this work, a unique method of input command shaping called impulse shaping is examined. A theoretical background is presented along with some insight into the methdos of calculating multiple mode sequences. The Middeck Active Control Experiment (MACE) is then described as the testbed for hardware experiments. These results are shown and some of the difficulties of dealing with nonlinearities are discussed. The paper is concluded with some conclusions about calculating and implementing impulse shaping in complex nonlinear systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prior research has led to the development of input command shapers that can reduce residual vibration in single- or multiple-mode flexible systems. We present a method for the development of multiple-mode shapers which are simpler to implement and produce smaller response delays than previous designs. An MIT / NASA experimental flexible structure, MACE, is employed as a test article for the validation of the new shaping method. We examine the results of tests conducted on simulations of MACE. The new shapers are shown to be effective in suppressing multiple-mode vibration, even in the presence of mild kinematic and dynamic non-linearities.