3 resultados para First order traffic model

em Massachusetts Institute of Technology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most knowledge representation languages are based on classes and taxonomic relationships between classes. Taxonomic hierarchies without defaults or exceptions are semantically equivalent to a collection of formulas in first order predicate calculus. Although designers of knowledge representation languages often express an intuitive feeling that there must be some advantage to representing facts as taxonomic relationships rather than first order formulas, there are few, if any, technical results supporting this intuition. We attempt to remedy this situation by presenting a taxonomic syntax for first order predicate calculus and a series of theorems that support the claim that taxonomic syntax is superior to classical syntax.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have argued elsewhere that first order inference can be made more efficient by using non-standard syntax for first order logic. In this paper we show how a fragment of English syntax under Montague semantics provides the foundation of a new inference procedure. This procedure seems more effective than corresponding procedures based on either classical syntax of our previously proposed taxonomic syntax. This observation may provide a functional explanation for some of the syntactic structure of English.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stock markets employ specialized traders, market-makers, designed to provide liquidity and volume to the market by constantly supplying both supply and demand. In this paper, we demonstrate a novel method for modeling the market as a dynamic system and a reinforcement learning algorithm that learns profitable market-making strategies when run on this model. The sequence of buys and sells for a particular stock, the order flow, we model as an Input-Output Hidden Markov Model fit to historical data. When combined with the dynamics of the order book, this creates a highly non-linear and difficult dynamic system. Our reinforcement learning algorithm, based on likelihood ratios, is run on this partially-observable environment. We demonstrate learning results for two separate real stocks.