5 resultados para First order theories

em Massachusetts Institute of Technology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most knowledge representation languages are based on classes and taxonomic relationships between classes. Taxonomic hierarchies without defaults or exceptions are semantically equivalent to a collection of formulas in first order predicate calculus. Although designers of knowledge representation languages often express an intuitive feeling that there must be some advantage to representing facts as taxonomic relationships rather than first order formulas, there are few, if any, technical results supporting this intuition. We attempt to remedy this situation by presenting a taxonomic syntax for first order predicate calculus and a series of theorems that support the claim that taxonomic syntax is superior to classical syntax.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have argued elsewhere that first order inference can be made more efficient by using non-standard syntax for first order logic. In this paper we show how a fragment of English syntax under Montague semantics provides the foundation of a new inference procedure. This procedure seems more effective than corresponding procedures based on either classical syntax of our previously proposed taxonomic syntax. This observation may provide a functional explanation for some of the syntactic structure of English.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

How much information about the shape of an object can be inferred from its image? In particular, can the shape of an object be reconstructed by measuring the light it reflects from points on its surface? These questions were raised by Horn [HO70] who formulated a set of conditions such that the image formation can be described in terms of a first order partial differential equation, the image irradiance equation. In general, an image irradiance equation has infinitely many solutions. Thus constraints necessary to find a unique solution need to be identified. First we study the continuous image irradiance equation. It is demonstrated when and how the knowledge of the position of edges on a surface can be used to reconstruct the surface. Furthermore we show how much about the shape of a surface can be deduced from so called singular points. At these points the surface orientation is uniquely determined by the measured brightness. Then we investigate images in which certain types of silhouettes, which we call b-silhouettes, can be detected. In particular we answer the following question in the affirmative: Is there a set of constraints which assure that if an image irradiance equation has a solution, it is unique? To this end we postulate three constraints upon the image irradiance equation and prove that they are sufficient to uniquely reconstruct the surface from its image. Furthermore it is shown that any two of these constraints are insufficient to assure a unique solution to an image irradiance equation. Examples are given which illustrate the different issues. Finally, an overview of known numerical methods for computing solutions to an image irradiance equation are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A method will be described for finding the shape of a smooth apaque object form a monocular image, given a knowledge of the surface photometry, the position of the lightsource and certain auxiliary information to resolve ambiguities. This method is complementary to the use of stereoscopy which relies on matching up sharp detail and will fail on smooth objects. Until now the image processing of single views has been restricted to objects which can meaningfully be considered two-dimensional or bounded by plane surfaces. It is possible to derive a first-order non-linear partial differential equation in two unknowns relating the intensity at the image points to the shape of the objects. This equation can be solved by means of an equivalent set of five ordinary differential equations. A curve traced out by solving this set of equations for one set of starting values is called a characteristic strip. Starting one of these strips from each point on some initial curve will produce the whole solution surface. The initial curves can usually be constructed around so-called singular points. A number of applications of this metod will be discussed including one to lunar topography and one to the scanning electron microscope. In both of these cases great simplifications occur in the equations. A note on polyhedra follows and a quantitative theory of facial make-up is touched upon. An implementation of some of these ideas on the PDP-6 computer with its attached image-dissector camera at the Artificial intelligence Laboratory will be described, and also a nose-recognition program.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

SIN and SOLDIER are heuristic programs in LISP which solve symbolic integration problems. SIN (Symbolic INtegrator) solves indefinite integration problems at the difficulty approaching those in the larger integral tables. SIN contains several more methods than are used in the previous symbolic integration program SAINT, and solves most of the problems attempted by SAINT in less than one second. SOLDIER (SOLution of Ordinary Differential Equations Routine) solves first order, first degree ordinary differential equations at the level of a good college sophomore and at an average of about five seconds per problem attempted. The differences in philosophy and operation between SAINT and SIN are described, and suggestions for extending the work presented are made.