2 resultados para Finite-Difference Method
em Massachusetts Institute of Technology
Resumo:
We present an immersed interface method for the incompressible Navier Stokes equations capable of handling rigid immersed boundaries. The immersed boundary is represented by a set of Lagrangian control points. In order to guarantee that the no-slip condition on the boundary is satisfied, singular forces are applied on the fluid at the immersed boundary. The forces are related to the jumps in pressure and the jumps in the derivatives of both pressure and velocity, and are interpolated using cubic splines. The strength of singular forces is determined by solving a small system of equations at each time step. The Navier-Stokes equations are discretized on a staggered Cartesian grid by a second order accurate projection method for pressure and velocity.
Resumo:
Reconstructing a surface from sparse sensory data is a well known problem in computer vision. Early vision modules typically supply sparse depth, orientation and discontinuity information. The surface reconstruction module incorporates these sparse and possibly conflicting measurements of a surface into a consistent, dense depth map. The coupled depth/slope model developed here provides a novel computational solution to the surface reconstruction problem. This method explicitly computes dense slope representation as well as dense depth representations. This marked change from previous surface reconstruction algorithms allows a natural integration of orientation constraints into the surface description, a feature not easily incorporated into earlier algorithms. In addition, the coupled depth/ slope model generalizes to allow for varying amounts of smoothness at different locations on the surface. This computational model helps conceptualize the problem and leads to two possible implementations- analog and digital. The model can be implemented as an electrical or biological analog network since the only computations required at each locally connected node are averages, additions and subtractions. A parallel digital algorithm can be derived by using finite difference approximations. The resulting system of coupled equations can be solved iteratively on a mesh-pf-processors computer, such as the Connection Machine. Furthermore, concurrent multi-grid methods are designed to speed the convergence of this digital algorithm.