4 resultados para Finite Difference
em Massachusetts Institute of Technology
Resumo:
We present an immersed interface method for the incompressible Navier Stokes equations capable of handling rigid immersed boundaries. The immersed boundary is represented by a set of Lagrangian control points. In order to guarantee that the no-slip condition on the boundary is satisfied, singular forces are applied on the fluid at the immersed boundary. The forces are related to the jumps in pressure and the jumps in the derivatives of both pressure and velocity, and are interpolated using cubic splines. The strength of singular forces is determined by solving a small system of equations at each time step. The Navier-Stokes equations are discretized on a staggered Cartesian grid by a second order accurate projection method for pressure and velocity.
Resumo:
There has been recent interest in using temporal difference learning methods to attack problems of prediction and control. While these algorithms have been brought to bear on many problems, they remain poorly understood. It is the purpose of this thesis to further explore these algorithms, presenting a framework for viewing them and raising a number of practical issues and exploring those issues in the context of several case studies. This includes applying the TD(lambda) algorithm to: 1) learning to play tic-tac-toe from the outcome of self-play and of play against a perfectly-playing opponent and 2) learning simple one-dimensional segmentation tasks.
Resumo:
In this paper, we develop a novel index structure to support efficient approximate k-nearest neighbor (KNN) query in high-dimensional databases. In high-dimensional spaces, the computational cost of the distance (e.g., Euclidean distance) between two points contributes a dominant portion of the overall query response time for memory processing. To reduce the distance computation, we first propose a structure (BID) using BIt-Difference to answer approximate KNN query. The BID employs one bit to represent each feature vector of point and the number of bit-difference is used to prune the further points. To facilitate real dataset which is typically skewed, we enhance the BID mechanism with clustering, cluster adapted bitcoder and dimensional weight, named the BID⁺. Extensive experiments are conducted to show that our proposed method yields significant performance advantages over the existing index structures on both real life and synthetic high-dimensional datasets.
Resumo:
We analyze a finite horizon, single product, periodic review model in which pricing and production/inventory decisions are made simultaneously. Demands in different periods are random variables that are independent of each other and their distributions depend on the product price. Pricing and ordering decisions are made at the beginning of each period and all shortages are backlogged. Ordering cost includes both a fixed cost and a variable cost proportional to the amount ordered. The objective is to find an inventory policy and a pricing strategy maximizing expected profit over the finite horizon. We show that when the demand model is additive, the profit-to-go functions are k-concave and hence an (s,S,p) policy is optimal. In such a policy, the period inventory is managed based on the classical (s,S) policy and price is determined based on the inventory position at the beginning of each period. For more general demand functions, i.e., multiplicative plus additive functions, we demonstrate that the profit-to-go function is not necessarily k-concave and an (s,S,p) policy is not necessarily optimal. We introduce a new concept, the symmetric k-concave functions and apply it to provide a characterization of the optimal policy.