5 resultados para Finger

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this research is to develop the prototype of a tactile sensing platform for anthropomorphic manipulation research. We investigate this problem through the fabrication and simple control of a planar 2-DOF robotic finger inspired by anatomic consistency, self-containment, and adaptability. The robot is equipped with a tactile sensor array based on optical transducer technology whereby localized changes in light intensity within an illuminated foam substrate correspond to the distribution and magnitude of forces applied to the sensor surface plane. The integration of tactile perception is a key component in realizing robotic systems which organically interact with the world. Such natural behavior is characterized by compliant performance that can initiate internal, and respond to external, force application in a dynamic environment. However, most of the current manipulators that support some form of haptic feedback either solely derive proprioceptive sensation or only limit tactile sensors to the mechanical fingertips. These constraints are due to the technological challenges involved in high resolution, multi-point tactile perception. In this work, however, we take the opposite approach, emphasizing the role of full-finger tactile feedback in the refinement of manual capabilities. To this end, we propose and implement a control framework for sensorimotor coordination analogous to infant-level grasping and fixturing reflexes. This thesis details the mechanisms used to achieve these sensory, actuation, and control objectives, along with the design philosophies and biological influences behind them. The results of behavioral experiments with a simple tactilely-modulated control scheme are also described. The hope is to integrate the modular finger into an %engineered analog of the human hand with a complete haptic system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research is concerned with the development of tactual displays to supplement the information available through lipreading. Because voicing carries a high informational load in speech and is not well transmitted through lipreading, the efforts are focused on providing tactual displays of voicing to supplement the information available on the lips of the talker. This research includes exploration of 1) signal-processing schemes to extract information about voicing from the acoustic speech signal, 2) methods of displaying this information through a multi-finger tactual display, and 3) perceptual evaluations of voicing reception through the tactual display alone (T), lipreading alone (L), and the combined condition (L+T). Signal processing for the extraction of voicing information used amplitude-envelope signals derived from filtered bands of speech (i.e., envelopes derived from a lowpass-filtered band at 350 Hz and from a highpass-filtered band at 3000 Hz). Acoustic measurements made on the envelope signals of a set of 16 initial consonants represented through multiple tokens of C1VC2 syllables indicate that the onset-timing difference between the low- and high-frequency envelopes (EOA: envelope-onset asynchrony) provides a reliable and robust cue for distinguishing voiced from voiceless consonants. This acoustic cue was presented through a two-finger tactual display such that the envelope of the high-frequency band was used to modulate a 250-Hz carrier signal delivered to the index finger (250-I) and the envelope of the low-frequency band was used to modulate a 50-Hz carrier delivered to the thumb (50T). The temporal-onset order threshold for these two signals, measured with roving signal amplitude and duration, averaged 34 msec, sufficiently small for use of the EOA cue. Perceptual evaluations of the tactual display of EOA with speech signal indicated: 1) that the cue was highly effective for discrimination of pairs of voicing contrasts; 2) that the identification of 16 consonants was improved by roughly 15 percentage points with the addition of the tactual cue over L alone; and 3) that no improvements in L+T over L were observed for reception of words in sentences, indicating the need for further training on this task

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the problem of synthesizing stable grasps on arbitrary planar polygons. Each finger is a virtual spring whose stiffnes and compression can be programmed. The contacts between the finger tips and the object are point contacts without friction. We prove that all force-closure grasps can be made stable, and it costs 0(n) time to synthesize a set of n virtual springs such that a given force closure grasp is stable. We can also choose the compliance center and the stiffness matrix of the grasp, and so choose the compliant behavior of the grasped object about its equilibrium. The planning and execution of grasps and assembly operations become easier and less sensitive to errors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis addresses the problem of synthesizing grasps that are force-closure and stable. The synthesis of force-closure grasps constructs independent regions of contact for the fingertips, such that the motion of the grasped object is totally constrained. The synthesis of stable grasps constructs virtual springs at the contacts, such that the grasped object is stable, and has a desired stiffness matrix about its stable equilibrium. A grasp on an object is force-closure if and only if we can exert, through the set of contacts, arbitrary forces and moments on the object. So force-closure implies equilibrium exists because zero forces and moment is spanned. In the reverse direction, we prove that a non-marginal equilibrium grasp is also a force-closure grasp, if it has at least two point contacts with friction in 2D, or two soft-finger contacts or three hard-finger contacts in 3D. Next, we prove that all force-closure grasps can be made stable, by using either active or passive springs at the contacts. The thesis develops a simple relation between the stability and stiffness of the grasp and the spatial configuration of the virtual springs at the contacts. The stiffness of the grasp depends also on whether the points of contact stick, or slide without friction on straight or curved surfaces of the object. The thesis presents fast and simple algorithms for directly constructing stable fore-closure grasps based on the shape of the grasped object. The formal framework of force-closure and stable grasps provides a partial explanation to why we stably grasp objects to easily, and to why our fingers are better soft than hard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report addresses the problem of acquiring objects using articulated robotic hands. Standard grasps are used to make the problem tractable, and a technique is developed for generalizing these standard grasps to increase their flexibility to variations in the problem geometry. A generalized grasp description is applied to a new problem situation using a parallel search through hand configuration space, and the result of this operation is a global overview of the space of good solutions. The techniques presented in this report have been implemented, and the results are verified using the Salisbury three-finger robotic hand.