1 resultado para Fine arts.
em Massachusetts Institute of Technology
Filtro por publicador
- Repository Napier (1)
- Rhode Island School of Design (8)
- Aberdeen University (2)
- Aberystwyth University Repository - Reino Unido (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Aquatic Commons (5)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (8)
- Aston University Research Archive (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Blue Tiger Commons - Lincoln University - USA (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (4)
- Boston University Digital Common (4)
- Brock University, Canada (6)
- Bucknell University Digital Commons - Pensilvania - USA (9)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (19)
- CentAUR: Central Archive University of Reading - UK (4)
- Center for Jewish History Digital Collections (4)
- Chapman University Digital Commons - CA - USA (9)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (53)
- Clark Digital Commons--knowledge; creativity; research; and innovation of Clark University (74)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Archives@Colby (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (6)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Ecology and Society (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (7)
- Greenwich Academic Literature Archive - UK (10)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (12)
- Indian Institute of Science - Bangalore - Índia (48)
- Instituto Politécnico de Castelo Branco - Portugal (1)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (16)
- Portal de Revistas Científicas Complutenses - Espanha (7)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (46)
- Queensland University of Technology - ePrints Archive (335)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (10)
- Research Open Access Repository of the University of East London. (1)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (3)
- Universidade de Lisboa - Repositório Aberto (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal, Canada (13)
- University of Michigan (148)
- University of Queensland eSpace - Australia (4)
- University of Washington (18)
- USA Library of Congress (1)
- WestminsterResearch - UK (1)
Resumo:
Compliant control is a standard method for performing fine manipulation tasks, like grasping and assembly, but it requires estimation of the state of contact between the robot arm and the objects involved. Here we present a method to learn a model of the movement from measured data. The method requires little or no prior knowledge and the resulting model explicitly estimates the state of contact. The current state of contact is viewed as the hidden state variable of a discrete HMM. The control dependent transition probabilities between states are modeled as parametrized functions of the measurement We show that their parameters can be estimated from measurements concurrently with the estimation of the parameters of the movement in each state of contact. The learning algorithm is a variant of the EM procedure. The E step is computed exactly; solving the M step exactly would require solving a set of coupled nonlinear algebraic equations in the parameters. Instead, gradient ascent is used to produce an increase in likelihood.