1 resultado para Failure to Yield Violation.
em Massachusetts Institute of Technology
Filtro por publicador
- Repository Napier (2)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (1)
- Aquatic Commons (17)
- Archive of European Integration (8)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (20)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (7)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (28)
- Boston University Digital Common (4)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (24)
- Cambridge University Engineering Department Publications Database (24)
- CentAUR: Central Archive University of Reading - UK (17)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (57)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (3)
- Digital Commons at Florida International University (9)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (5)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (11)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (19)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (5)
- Harvard University (2)
- Helda - Digital Repository of University of Helsinki (14)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (138)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (10)
- Nottingham eTheses (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (122)
- Queensland University of Technology - ePrints Archive (247)
- RepoCLACAI - Consorcio Latinoamericano Contra el Aborto Inseguro (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (13)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- School of Medicine, Washington University, United States (2)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (4)
- Université de Montréal (1)
- Université de Montréal, Canada (2)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (11)
- University of Queensland eSpace - Australia (11)
- University of Washington (1)
- WestminsterResearch - UK (2)
Resumo:
We introduce and explore an approach to estimating statistical significance of classification accuracy, which is particularly useful in scientific applications of machine learning where high dimensionality of the data and the small number of training examples render most standard convergence bounds too loose to yield a meaningful guarantee of the generalization ability of the classifier. Instead, we estimate statistical significance of the observed classification accuracy, or the likelihood of observing such accuracy by chance due to spurious correlations of the high-dimensional data patterns with the class labels in the given training set. We adopt permutation testing, a non-parametric technique previously developed in classical statistics for hypothesis testing in the generative setting (i.e., comparing two probability distributions). We demonstrate the method on real examples from neuroimaging studies and DNA microarray analysis and suggest a theoretical analysis of the procedure that relates the asymptotic behavior of the test to the existing convergence bounds.