4 resultados para FLUORESCENCE QUANTUM YIELDS
em Massachusetts Institute of Technology
Resumo:
A computational model of observation in quantum mechanics is presented. The model provides a clean and simple computational paradigm which can be used to illustrate and possibly explain some of the unintuitive and unexpected behavior of some quantum mechanical systems. As examples, the model is used to simulate three seminal quantum mechanical experiments. The results obtained agree with the predictions of quantum mechanics (and physical measurements), yet the model is perfectly deterministic and maintains a notion of locality.
Resumo:
To engineer complex synthetic biological systems will require modular design, assembly, and characterization strategies. The RNA polymerase arrival rate (PAR) is defined to be the rate that RNA polymerases arrive at a specified location on the DNA. Designing and characterizing biological modules in terms of RNA polymerase arrival rates provides for many advantages in the construction and modeling of biological systems. PARMESAN is an in vitro method for measuring polymerase arrival rates using pyrrolo-dC, a fluorescent DNA base that can substitute for cytosine. Pyrrolo-dC shows a detectable fluorescence difference when in single-stranded versus double-stranded DNA. During transcription, RNA polymerase separates the two strands of DNA, leading to a change in the fluorescence of pyrrolo-dC. By incorporating pyrrolo-dC at specific locations in the DNA, fluorescence changes can be taken as a direct measurement of the polymerase arrival rate.
Resumo:
We present the results of GaInNAs/GaAs quantum dot structures with GaAsN barrier layers grown by solid source molecular beam epitaxy. Extension of the emission wavelength of GaInNAs quantum dots by ~170nm was observed in samples with GaAsN barriers in place of GaAs. However, optimization of the GaAsN barrier layer thickness is necessary to avoid degradation in luminescence intensity and structural property of the GaInNAs dots. Lasers with GaInNAs quantum dots as active layer were fabricated and room-temperature continuous-wave lasing was observed for the first time. Lasing occurs via the ground state at ~1.2μm, with threshold current density of 2.1kA/cm[superscript 2] and maximum output power of 16mW. These results are significantly better than previously reported values for this quantum-dot system.
Resumo:
Synechocystis PCC 6803 is a photosynthetic bacterium that has the potential to make bioproducts from carbon dioxide and light. Biochemical production from photosynthetic organisms is attractive because it replaces the typical bioprocessing steps of crop growth, milling, and fermentation, with a one-step photosynthetic process. However, low yields and slow growth rates limit the economic potential of such endeavors. Rational metabolic engineering methods are hindered by limited cellular knowledge and inadequate models of Synechocystis. Instead, inverse metabolic engineering, a scheme based on combinatorial gene searches which does not require detailed cellular models, but can exploit sequence data and existing molecular biological techniques, was used to find genes that (1) improve the production of the biopolymer poly-3-hydroxybutyrate (PHB) and (2) increase the growth rate. A fluorescence activated cell sorting assay was developed to screen for high PHB producing clones. Separately, serial sub-culturing was used to select clones that improve growth rate. Novel gene knock-outs were identified that increase PHB production and others that increase the specific growth rate. These improvements make this system more attractive for industrial use and demonstrate the power of inverse metabolic engineering to identify novel phenotype-associated genes in poorly understood systems.