3 resultados para FAR guide

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Behavior Language is a rule-based real-time parallel robot programming language originally based on ideas from [Brooks 86], [Connell 89], and [Maes 89]. It compiles into a modified and extended version of the subsumption architecture [Brooks 86] and thus has backends for a number of processors including the Motorola 68000 and 68HCll, the Hitachi 6301, and Common Lisp. Behaviors are groups of rules which are activatable by a number of different schemes. There are no shared data structures across behaviors, but instead all communication is by explicit message passing. All rules are assumed to run in parallel and asynchronously. It includes the earlier notions of inhibition and suppression, along with a number of mechanisms for spreading of activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The furious pace of Moore's Law is driving computer architecture into a realm where the the speed of light is the dominant factor in system latencies. The number of clock cycles to span a chip are increasing, while the number of bits that can be accessed within a clock cycle is decreasing. Hence, it is becoming more difficult to hide latency. One alternative solution is to reduce latency by migrating threads and data, but the overhead of existing implementations has previously made migration an unserviceable solution so far. I present an architecture, implementation, and mechanisms that reduces the overhead of migration to the point where migration is a viable supplement to other latency hiding mechanisms, such as multithreading. The architecture is abstract, and presents programmers with a simple, uniform fine-grained multithreaded parallel programming model with implicit memory management. In other words, the spatial nature and implementation details (such as the number of processors) of a parallel machine are entirely hidden from the programmer. Compiler writers are encouraged to devise programming languages for the machine that guide a programmer to express their ideas in terms of objects, since objects exhibit an inherent physical locality of data and code. The machine implementation can then leverage this locality to automatically distribute data and threads across the physical machine by using a set of high performance migration mechanisms. An implementation of this architecture could migrate a null thread in 66 cycles -- over a factor of 1000 improvement over previous work. Performance also scales well; the time required to move a typical thread is only 4 to 5 times that of a null thread. Data migration performance is similar, and scales linearly with data block size. Since the performance of the migration mechanism is on par with that of an L2 cache, the implementation simulated in my work has no data caches and relies instead on multithreading and the migration mechanism to hide and reduce access latencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

“What is value in product development?” is the key question of this paper. The answer is critical to the creation of lean in product development. By knowing how much value is added by product development (PD) activities, decisions can be more rationally made about how to allocate resources, such as time and money. In order to apply the principles of Lean Thinking and remove waste from the product development system, value must be precisely defined. Unfortunately, value is a complex entity that is composed of many dimensions and has thus far eluded definition on a local level. For this reason, research has been initiated on “Measuring Value in Product Development.” This paper serves as an introduction to this research. It presents the current understanding of value in PD, the critical questions involved, and a specific research design to guide the development of a methodology for measuring value. Work in PD value currently focuses on either high-level perspectives on value, or detailed looks at the attributes that value might have locally in the PD process. Models that attempt to capture value in PD are reviewed. These methods, however, do not capture the depth necessary to allow for application. A methodology is needed to evaluate activities on a local level to determine the amount of value they add and their sensitivity with respect to performance, cost, time, and risk. Two conceptual tools are proposed. The first is a conceptual framework for value creation in PD, referred to here as the Value Creation Model. The second tool is the Value-Activity Map, which shows the relationships between specific activities and value attributes. These maps will allow a better understanding of the development of value in PD, will facilitate comparison of value development between separate projects, and will provide the information necessary to adapt process analysis tools (such as DSM) to consider value. The key questions that this research entails are: · What are the primary attributes of lifecycle value within PD? · How can one model the creation of value in a specific PD process? · Can a useful methodology be developed to quantify value in PD processes? · What are the tools necessary for application? · What PD metrics will be integrated with the necessary tools? The research milestones are: · Collection of value attributes and activities (September, 200) · Development of methodology of value-activity association (October, 2000) · Testing and refinement of the methodology (January, 2001) · Tool Development (March, 2001) · Present findings at July INCOSE conference (April, 2001) · Deliver thesis that captures a formalized methodology for defining value in PD (including LEM data sheets) (June, 2001) The research design aims for the development of two primary deliverables: a methodology to guide the incorporation of value, and a product development tool that will allow direct application.