6 resultados para Externalizing problems
em Massachusetts Institute of Technology
Resumo:
This thesis investigates a new approach to lattice basis reduction suggested by M. Seysen. Seysen's algorithm attempts to globally reduce a lattice basis, whereas the Lenstra, Lenstra, Lovasz (LLL) family of reduction algorithms concentrates on local reductions. We show that Seysen's algorithm is well suited for reducing certain classes of lattice bases, and often requires much less time in practice than the LLL algorithm. We also demonstrate how Seysen's algorithm for basis reduction may be applied to subset sum problems. Seysen's technique, used in combination with the LLL algorithm, and other heuristics, enables us to solve a much larger class of subset sum problems than was previously possible.
Resumo:
There has been much interest in the area of model-based reasoning within the Artificial Intelligence community, particularly in its application to diagnosis and troubleshooting. The core issue in this thesis, simply put, is, model-based reasoning is fine, but whence the model? Where do the models come from? How do we know we have the right models? What does the right model mean anyway? Our work has three major components. The first component deals with how we determine whether a piece of information is relevant to solving a problem. We have three ways of determining relevance: derivational, situational and an order-of-magnitude reasoning process. The second component deals with the defining and building of models for solving problems. We identify these models, determine what we need to know about them, and importantly, determine when they are appropriate. Currently, the system has a collection of four basic models and two hybrid models. This collection of models has been successfully tested on a set of fifteen simple kinematics problems. The third major component of our work deals with how the models are selected.
Resumo:
This report describes a paradigm for combining associational and causal reasoning to achieve efficient and robust problem-solving behavior. The Generate, Test and Debug (GTD) paradigm generates initial hypotheses using associational (heuristic) rules. The tester verifies hypotheses, supplying the debugger with causal explanations for bugs found if the test fails. The debugger uses domain-independent causal reasoning techniques to repair hypotheses, analyzing domain models and the causal explanations produced by the tester to determine how to replace faulty assumptions made by the generator. We analyze the strengths and weaknesses of associational and causal reasoning techniques, and present a theory of debugging plans and interpretations. The GTD paradigm has been implemented and tested in the domains of geologic interpretation, the blocks world, and Tower of Hanoi problems.
Resumo:
In this thesis we study the general problem of reconstructing a function, defined on a finite lattice from a set of incomplete, noisy and/or ambiguous observations. The goal of this work is to demonstrate the generality and practical value of a probabilistic (in particular, Bayesian) approach to this problem, particularly in the context of Computer Vision. In this approach, the prior knowledge about the solution is expressed in the form of a Gibbsian probability distribution on the space of all possible functions, so that the reconstruction task is formulated as an estimation problem. Our main contributions are the following: (1) We introduce the use of specific error criteria for the design of the optimal Bayesian estimators for several classes of problems, and propose a general (Monte Carlo) procedure for approximating them. This new approach leads to a substantial improvement over the existing schemes, both regarding the quality of the results (particularly for low signal to noise ratios) and the computational efficiency. (2) We apply the Bayesian appraoch to the solution of several problems, some of which are formulated and solved in these terms for the first time. Specifically, these applications are: teh reconstruction of piecewise constant surfaces from sparse and noisy observationsl; the reconstruction of depth from stereoscopic pairs of images and the formation of perceptual clusters. (3) For each one of these applications, we develop fast, deterministic algorithms that approximate the optimal estimators, and illustrate their performance on both synthetic and real data. (4) We propose a new method, based on the analysis of the residual process, for estimating the parameters of the probabilistic models directly from the noisy observations. This scheme leads to an algorithm, which has no free parameters, for the restoration of piecewise uniform images. (5) We analyze the implementation of the algorithms that we develop in non-conventional hardware, such as massively parallel digital machines, and analog and hybrid networks.
Resumo:
A program was written to solve calculus word problems. The program, CARPS (CALculus Rate Problem Solver), is restricted to rate problems. The overall plan of the program is similar to Bobrow's STUDENT, the primary difference being the introduction of "structures" as the internal model in CARPS. Structures are stored internally as trees. Each structure is designed to hold the information gathered about one object. A description of CARPS is given by working through two problems, one in great detail. Also included is a critical analysis of STUDENT.
Resumo:
We study four measures of problem instance behavior that might account for the observed differences in interior-point method (IPM) iterations when these methods are used to solve semidefinite programming (SDP) problem instances: (i) an aggregate geometry measure related to the primal and dual feasible regions (aspect ratios) and norms of the optimal solutions, (ii) the (Renegar-) condition measure C(d) of the data instance, (iii) a measure of the near-absence of strict complementarity of the optimal solution, and (iv) the level of degeneracy of the optimal solution. We compute these measures for the SDPLIB suite problem instances and measure the correlation between these measures and IPM iteration counts (solved using the software SDPT3) when the measures have finite values. Our conclusions are roughly as follows: the aggregate geometry measure is highly correlated with IPM iterations (CORR = 0.896), and is a very good predictor of IPM iterations, particularly for problem instances with solutions of small norm and aspect ratio. The condition measure C(d) is also correlated with IPM iterations, but less so than the aggregate geometry measure (CORR = 0.630). The near-absence of strict complementarity is weakly correlated with IPM iterations (CORR = 0.423). The level of degeneracy of the optimal solution is essentially uncorrelated with IPM iterations.