6 resultados para Extended Karplus equations
em Massachusetts Institute of Technology
Resumo:
The MOS transistor physical model as described in [3] is presented here as a network model. The goal is to obtain an accurate model, suitable for simulation, free from certain problems reported in the literature [13], and conceptually as simple as possible. To achieve this goal the original model had to be extended and modified. The paper presents the derivation of the network model from physical equations, including the corrections which are required for simulation and which compensate for simplifications introduced in the original physical model. Our intrinsic MOS model consists of three nonlinear voltage-controlled capacitors and a dependent current source. The charges of the capacitors and the current of the current source are functions of the voltages $V_{gs}$, $V_{bs}$, and $V_{ds}$. The complete model consists of the intrinsic model plus the parasitics. The apparent simplicity of the model is a result of hiding information in the characteristics of the nonlinear components. The resulted network model has been checked by simulation and analysis. It is shown that the network model is suitable for simulation: It is defined for any value of the voltages; the functions involved are continuous and satisfy Lipschitz conditions with no jumps at region boundaries; Derivatives have been computed symbolically and are available for use by the Newton-Raphson method. The model"s functions can be measured from the terminals. It is also shown that small channel effects can be included in the model. Higher frequency effects can be modeled by using a network consisting of several sections of the basic lumped model. Future plans include a detailed comparison of the network model with models such as SPICE level 3 and a comparison of the multi- section higher frequency model with experiments.
Resumo:
We describe a new method for motion estimation and 3D reconstruction from stereo image sequences obtained by a stereo rig moving through a rigid world. We show that given two stereo pairs one can compute the motion of the stereo rig directly from the image derivatives (spatial and temporal). Correspondences are not required. One can then use the images from both pairs combined to compute a dense depth map. The motion estimates between stereo pairs enable us to combine depth maps from all the pairs in the sequence to form an extended scene reconstruction and we show results from a real image sequence. The motion computation is a linear least squares computation using all the pixels in the image. Areas with little or no contrast are implicitly weighted less so one does not have to explicitly apply a confidence measure.
Resumo:
This project investigates the computational representation of differentiable manifolds, with the primary goal of solving partial differential equations using multiple coordinate systems on general n- dimensional spaces. In the process, this abstraction is used to perform accurate integrations of ordinary differential equations using multiple coordinate systems. In the case of linear partial differential equations, however, unexpected difficulties arise even with the simplest equations.
Resumo:
This paper explores automating the qualitative analysis of physical systems. It describes a program, called PLR, that takes parameterized ordinary differential equations as input and produces a qualitative description of the solutions for all initial values. PLR approximates intractable nonlinear systems with piecewise linear ones, analyzes the approximations, and draws conclusions about the original systems. It chooses approximations that are accurate enough to reproduce the essential properties of their nonlinear prototypes, yet simple enough to be analyzed completely and efficiently. It derives additional properties, such as boundedness or periodicity, by theoretical methods. I demonstrate PLR on several common nonlinear systems and on published examples from mechanical engineering.
Resumo:
We present a technique for the rapid and reliable evaluation of linear-functional output of elliptic partial differential equations with affine parameter dependence. The essential components are (i) rapidly uniformly convergent reduced-basis approximations — Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N (optimally) selected points in parameter space; (ii) a posteriori error estimation — relaxations of the residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs; and (iii) offline/online computational procedures — stratagems that exploit affine parameter dependence to de-couple the generation and projection stages of the approximation process. The operation count for the online stage — in which, given a new parameter value, we calculate the output and associated error bound — depends only on N (typically small) and the parametric complexity of the problem. The method is thus ideally suited to the many-query and real-time contexts. In this paper, based on the technique we develop a robust inverse computational method for very fast solution of inverse problems characterized by parametrized partial differential equations. The essential ideas are in three-fold: first, we apply the technique to the forward problem for the rapid certified evaluation of PDE input-output relations and associated rigorous error bounds; second, we incorporate the reduced-basis approximation and error bounds into the inverse problem formulation; and third, rather than regularize the goodness-of-fit objective, we may instead identify all (or almost all, in the probabilistic sense) system configurations consistent with the available experimental data — well-posedness is reflected in a bounded "possibility region" that furthermore shrinks as the experimental error is decreased.
Resumo:
We present an immersed interface method for the incompressible Navier Stokes equations capable of handling rigid immersed boundaries. The immersed boundary is represented by a set of Lagrangian control points. In order to guarantee that the no-slip condition on the boundary is satisfied, singular forces are applied on the fluid at the immersed boundary. The forces are related to the jumps in pressure and the jumps in the derivatives of both pressure and velocity, and are interpolated using cubic splines. The strength of singular forces is determined by solving a small system of equations at each time step. The Navier-Stokes equations are discretized on a staggered Cartesian grid by a second order accurate projection method for pressure and velocity.