2 resultados para Exponential Smoothing

em Massachusetts Institute of Technology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop an extension to the tactical planning model (TPM) for a job shop by the third author. The TPM is a discrete-time model in which all transitions occur at the start of each time period. The time period must be defined appropriately in order for the model to be meaningful. Each period must be short enough so that a job is unlikely to travel through more than one station in one period. At the same time, the time period needs to be long enough to justify the assumptions of continuous workflow and Markovian job movements. We build an extension to the TPM that overcomes this restriction of period sizing by permitting production control over shorter time intervals. We achieve this by deriving a continuous-time linear control rule for a single station. We then determine the first two moments of the production level and queue length for the workstation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional inventory models focus on risk-neutral decision makers, i.e., characterizing replenishment strategies that maximize expected total profit, or equivalently, minimize expected total cost over a planning horizon. In this paper, we propose a framework for incorporating risk aversion in multi-period inventory models as well as multi-period models that coordinate inventory and pricing strategies. In each case, we characterize the optimal policy for various measures of risk that have been commonly used in the finance literature. In particular, we show that the structure of the optimal policy for a decision maker with exponential utility functions is almost identical to the structure of the optimal risk-neutral inventory (and pricing) policies. Computational results demonstrate the importance of this approach not only to risk-averse decision makers, but also to risk-neutral decision makers with limited information on the demand distribution.