4 resultados para Experiment Design
em Massachusetts Institute of Technology
Resumo:
We consider the question "How should one act when the only goal is to learn as much as possible?" Building on the theoretical results of Fedorov [1972] and MacKay [1992], we apply techniques from Optimal Experiment Design (OED) to guide the query/action selection of a neural network learner. We demonstrate that these techniques allow the learner to minimize its generalization error by exploring its domain efficiently and completely. We conclude that, while not a panacea, OED-based query/action has much to offer, especially in domains where its high computational costs can be tolerated.
Resumo:
One objective of artificial intelligence is to model the behavior of an intelligent agent interacting with its environment. The environment's transformations can be modeled as a Markov chain, whose state is partially observable to the agent and affected by its actions; such processes are known as partially observable Markov decision processes (POMDPs). While the environment's dynamics are assumed to obey certain rules, the agent does not know them and must learn. In this dissertation we focus on the agent's adaptation as captured by the reinforcement learning framework. This means learning a policy---a mapping of observations into actions---based on feedback from the environment. The learning can be viewed as browsing a set of policies while evaluating them by trial through interaction with the environment. The set of policies is constrained by the architecture of the agent's controller. POMDPs require a controller to have a memory. We investigate controllers with memory, including controllers with external memory, finite state controllers and distributed controllers for multi-agent systems. For these various controllers we work out the details of the algorithms which learn by ascending the gradient of expected cumulative reinforcement. Building on statistical learning theory and experiment design theory, a policy evaluation algorithm is developed for the case of experience re-use. We address the question of sufficient experience for uniform convergence of policy evaluation and obtain sample complexity bounds for various estimators. Finally, we demonstrate the performance of the proposed algorithms on several domains, the most complex of which is simulated adaptive packet routing in a telecommunication network.
Resumo:
We discuss a formulation for active example selection for function learning problems. This formulation is obtained by adapting Fedorov's optimal experiment design to the learning problem. We specifically show how to analytically derive example selection algorithms for certain well defined function classes. We then explore the behavior and sample complexity of such active learning algorithms. Finally, we view object detection as a special case of function learning and show how our formulation reduces to a useful heuristic to choose examples to reduce the generalization error.
Resumo:
In early stages of architectural design, as in other design domains, the language used is often very abstract. In architectural design, for example, architects and their clients use experiential terms such as "private" or "open" to describe spaces. If we are to build programs that can help designers during this early-stage design, we must give those programs the capability to deal with concepts on the level of such abstractions. The work reported in this thesis sought to do that, focusing on two key questions: How are abstract terms such as "private" and "open" translated into physical form? How might one build a tool to assist designers with this process? The Architect's Collaborator (TAC) was built to explore these issues. It is a design assistant that supports iterative design refinement, and that represents and reasons about how experiential qualities are manifested in physical form. Given a starting design and a set of design goals, TAC explores the space of possible designs in search of solutions that satisfy the goals. It employs a strategy we've called dependency-directed redesign: it evaluates a design with respect to a set of goals, then uses an explanation of the evaluation to guide proposal and refinement of repair suggestions; it then carries out the repair suggestions to create new designs. A series of experiments was run to study TAC's behavior. Issues of control structure, goal set size, goal order, and modification operator capabilities were explored. In addition, TAC's use as a design assistant was studied in an experiment using a house in the process of being redesigned. TAC's use as an analysis tool was studied in an experiment using Frank Lloyd Wright's Prairie houses.