2 resultados para Excess Spontaneous Emission

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid phase reaction of NiPt/Si and NiPt/SiGe is one of the key issues for silicide (germanosilicide) technology. Especially, the NiPtSiGe, in which four elements are involved, is a very complex system. As a result, a detailed study is necessary for the interfacial reaction between NiPt alloy film and SiGe substrate. Besides using traditional material characterization techniques, characterization of Schottky diode is a good measure to detect the interface imperfections or defects, which are not easy to be found on large area blanket samples. The I-V characteristics of 10nm Ni(Pt=0, 5, 10 at.%) germanosilicides/n-Si₀/₇Ge₀.₃ and silicides/n-Si contact annealed at 400 and 500°C were studied. For Schottky contact on n-Si, with the addition of Pt in the Ni(Pt) alloy, the Schottky barrier height (SBH) increases greatly. With the inclusion of a 10% Pt, SBH increases ~0.13 eV. However, for the Schottky contacts on SiGe, with the addition of 10% Pt, the increase of SBH is only ~0.04eV. This is explained by pinning of the Fermi level. The forward I-V characteristics of 10nm Ni(Pt=0, 5, 10 at.%)SiGe/SiGe contacts annealed at 400°C were investigated in the temperature range from 93 to 300K. At higher temperature (>253K) and larger bias at low temperature (<253K), the I-V curves can be well explained by a thermionic emission model. At lower temperature, excess currents at lower forward bias region occur, which can be explained by recombination/generation or patches due to inhomogenity of SBH with pinch-off model or a combination of the above mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The InGaN system provides the opportunity to fabricate light emitting devices over the whole visible and ultraviolet spectrum due to band-gap energies E[subscript g] varying between 3.42 eV for GaN and 1.89 eV for InN. However, high In content in InGaN layers will result in a significant degradation of the crystalline quality of the epitaxial layers. In addition, unlike other III-V compound semiconductors, the ratio of gallium to indium incorporated in InGaN is in general not a simple function of the metal atomic flux ratio, f[subscript Ga]/f[subscript In]. Instead, In incorporation is complicated by the tendency of gallium to incorporate preferentially and excess In to form metallic droplets on the growth surface. This phenomenon can definitely affect the In distribution in the InGaN system. Scanning electron microscopy, room temperature photoluminescence, and X-ray diffraction techniques have been used to characterize InGaN layer grown on InN and InGaN buffers. The growth was done on c-plane sapphire by MOCVD. Results showed that green emission was obtained which indicates a relatively high In incorporation.