6 resultados para Ethno-linguistic nationalism of protest
em Massachusetts Institute of Technology
Resumo:
The computer science technique of computational complexity analysis can provide powerful insights into the algorithm-neutral analysis of information processing tasks. Here we show that a simple, theory-neutral linguistic model of syntactic agreement and ambiguity demonstrates that natural language parsing may be computationally intractable. Significantly, we show that it may be syntactic features rather than rules that can cause this difficulty. Informally, human languages and the computationally intractable Satisfiability (SAT) problem share two costly computional mechanisms: both enforce agreement among symbols across unbounded distances (Subject-Verb agreement) and both allow ambiguity (is a word a Noun or a Verb?).
Resumo:
Does knowledge of language consist of symbolic rules? How do children learn and use their linguistic knowledge? To elucidate these questions, we present a computational model that acquires phonological knowledge from a corpus of common English nouns and verbs. In our model the phonological knowledge is encapsulated as boolean constraints operating on classical linguistic representations of speech sounds in term of distinctive features. The learning algorithm compiles a corpus of words into increasingly sophisticated constraints. The algorithm is incremental, greedy, and fast. It yields one-shot learning of phonological constraints from a few examples. Our system exhibits behavior similar to that of young children learning phonological knowledge. As a bonus the constraints can be interpreted as classical linguistic rules. The computational model can be implemented by a surprisingly simple hardware mechanism. Our mechanism also sheds light on a fundamental AI question: How are signals related to symbols?
Resumo:
This paper explores the relationships between a computation theory of temporal representation (as developed by James Allen) and a formal linguistic theory of tense (as developed by Norbert Hornstein) and aspect. It aims to provide explicit answers to four fundamental questions: (1) what is the computational justification for the primitive of a linguistic theory; (2) what is the computational explanation of the formal grammatical constraints; (3) what are the processing constraints imposed on the learnability and markedness of these theoretical constructs; and (4) what are the constraints that a linguistic theory imposes on representations. We show that one can effectively exploit the interface between the language faculty and the cognitive faculties by using linguistic constraints to determine restrictions on the cognitive representation and vice versa. Three main results are obtained: (1) We derive an explanation of an observed grammatical constraint on tense?? Linear Order Constraint??m the information monotonicity property of the constraint propagation algorithm of Allen's temporal system: (2) We formulate a principle of markedness for the basic tense structures based on the computational efficiency of the temporal representations; and (3) We show Allen's interval-based temporal system is not arbitrary, but it can be used to explain independently motivated linguistic constraints on tense and aspect interpretations. We also claim that the methodology of research developed in this study??oss-level" investigation of independently motivated formal grammatical theory and computational models??a powerful paradigm with which to attack representational problems in basic cognitive domains, e.g., space, time, causality, etc.
Resumo:
The goal of this article is to reveal the computational structure of modern principle-and-parameter (Chomskian) linguistic theories: what computational problems do these informal theories pose, and what is the underlying structure of those computations? To do this, I analyze the computational complexity of human language comprehension: what linguistic representation is assigned to a given sound? This problem is factored into smaller, interrelated (but independently statable) problems. For example, in order to understand a given sound, the listener must assign a phonetic form to the sound; determine the morphemes that compose the words in the sound; and calculate the linguistic antecedent of every pronoun in the utterance. I prove that these and other subproblems are all NP-hard, and that language comprehension is itself PSPACE-hard.
Resumo:
Humans rapidly and reliably learn many kinds of regularities and generalizations. We propose a novel model of fast learning that exploits the properties of sparse representations and the constraints imposed by a plausible hardware mechanism. To demonstrate our approach we describe a computational model of acquisition in the domain of morphophonology. We encapsulate phonological information as bidirectional boolean constraint relations operating on the classical linguistic representations of speech sounds in term of distinctive features. The performance model is described as a hardware mechanism that incrementally enforces the constraints. Phonological behavior arises from the action of this mechanism. Constraints are induced from a corpus of common English nouns and verbs. The induction algorithm compiles the corpus into increasingly sophisticated constraints. The algorithm yields one-shot learning from a few examples. Our model has been implemented as a computer program. The program exhibits phonological behavior similar to that of young children. As a bonus the constraints that are acquired can be interpreted as classical linguistic rules.
Resumo:
In this report, we investigate the relationship between the semantic and syntactic properties of verbs. Our work is based on the English Verb Classes and Alternations of (Levin, 1993). We explore how these classes are manifested in other languages, in particular, in Bangla, German, and Korean. Our report includes a survey and classification of several hundred verbs from these languages into the cross-linguistic equivalents of Levin's classes. We also explore ways in which our findings may be used to enhance WordNet in two ways: making the English syntactic information of WordNet more fine-grained, and making WordNet multilingual.