10 resultados para Error Vector Magnitude (EVM)

em Massachusetts Institute of Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Support Vector (SV) machine is a novel type of learning machine, based on statistical learning theory, which contains polynomial classifiers, neural networks, and radial basis function (RBF) networks as special cases. In the RBF case, the SV algorithm automatically determines centers, weights and threshold such as to minimize an upper bound on the expected test error. The present study is devoted to an experimental comparison of these machines with a classical approach, where the centers are determined by $k$--means clustering and the weights are found using error backpropagation. We consider three machines, namely a classical RBF machine, an SV machine with Gaussian kernel, and a hybrid system with the centers determined by the SV method and the weights trained by error backpropagation. Our results show that on the US postal service database of handwritten digits, the SV machine achieves the highest test accuracy, followed by the hybrid approach. The SV approach is thus not only theoretically well--founded, but also superior in a practical application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare Naive Bayes and Support Vector Machines on the task of multiclass text classification. Using a variety of approaches to combine the underlying binary classifiers, we find that SVMs substantially outperform Naive Bayes. We present full multiclass results on two well-known text data sets, including the lowest error to date on both data sets. We develop a new indicator of binary performance to show that the SVM's lower multiclass error is a result of its improved binary performance. Furthermore, we demonstrate and explore the surprising result that one-vs-all classification performs favorably compared to other approaches even though it has no error-correcting properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Support Vector Machines Regression (SVMR) is a regression technique which has been recently introduced by V. Vapnik and his collaborators (Vapnik, 1995; Vapnik, Golowich and Smola, 1996). In SVMR the goodness of fit is measured not by the usual quadratic loss function (the mean square error), but by a different loss function called Vapnik"s $epsilon$- insensitive loss function, which is similar to the "robust" loss functions introduced by Huber (Huber, 1981). The quadratic loss function is well justified under the assumption of Gaussian additive noise. However, the noise model underlying the choice of Vapnik's loss function is less clear. In this paper the use of Vapnik's loss function is shown to be equivalent to a model of additive and Gaussian noise, where the variance and mean of the Gaussian are random variables. The probability distributions for the variance and mean will be stated explicitly. While this work is presented in the framework of SVMR, it can be extended to justify non-quadratic loss functions in any Maximum Likelihood or Maximum A Posteriori approach. It applies not only to Vapnik's loss function, but to a much broader class of loss functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a method for limiting vibration in flexible systems by shaping the system inputs. Unlike most previous attempts at input shaping, this method does not require an extensive system model or lengthy numerical computation; only knowledge of the system natural frequency and damping ratio are required. The effectiveness of this method when there are errors in the system model is explored and quantified. An algorithm is presented which, given an upper bound on acceptable residual vibration amplitude, determines a shaping strategy that is insensitive to errors in the estimated natural frequency. A procedure for shaping inputs to systems with input constraints is outlined. The shaping method is evaluated by dynamic simulations and hardware experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Affine transformations are often used in recognition systems, to approximate the effects of perspective projection. The underlying mathematics is for exact feature data, with no positional uncertainty. In practice, heuristics are added to handle uncertainty. We provide a precise analysis of affine point matching, obtaining an expression for the range of affine-invariant values consistent with bounded uncertainty. This analysis reveals that the range of affine-invariant values depends on the actual $x$-$y$-positions of the features, i.e. with uncertainty, affine representations are not invariant with respect to the Cartesian coordinate system. We analyze the effect of this on geometric hashing and alignment recognition methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel ridge detector that finds ridges on vector fields. It is designed to automatically find the right scale of a ridge even in the presence of noise, multiple steps and narrow valleys. One of the key features of such ridge detector is that it has a zero response at discontinuities. The ridge detector can be applied to scalar and vector quantities such as color. We also present a parallel perceptual organization scheme based on such ridge detector that works without edges; in addition to perceptual groups, the scheme computes potential focus of attention points at which to direct future processing. The relation to human perception and several theoretical findings supporting the scheme are presented. We also show results of a Connection Machine implementation of the scheme for perceptual organization (without edges) using color.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recognition of objects with smooth bounding surfaces from their contour images is considerably more complicated than that of objects with sharp edges, since in the former case the set of object points that generates the silhouette contours changes from one view to another. The "curvature method", developed by Basri and Ullman [1988], provides a method to approximate the appearance of such objects from different viewpoints. In this paper we analyze the curvature method. We apply the method to ellipsoidal objects and compute analytically the error obtained for different rotations of the objects. The error depends on the exact shape of the ellipsoid (namely, the relative lengths of its axes), and it increases a sthe ellipsoid becomes "deep" (elongated in the Z-direction). We show that the errors are usually small, and that, in general, a small number of models is required to predict the appearance of an ellipsoid from all possible views. Finally, we show experimentally that the curvature method applies as well to objects with hyperbolic surface patches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we bound the generalization error of a class of Radial Basis Function networks, for certain well defined function learning tasks, in terms of the number of parameters and number of examples. We show that the total generalization error is partly due to the insufficient representational capacity of the network (because of its finite size) and partly due to insufficient information about the target function (because of finite number of samples). We make several observations about generalization error which are valid irrespective of the approximation scheme. Our result also sheds light on ways to choose an appropriate network architecture for a particular problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel algorithm for learning in a class of stochastic Markov decision processes (MDPs) with continuous state and action spaces that trades speed for accuracy. A transform of the stochastic MDP into a deterministic one is presented which captures the essence of the original dynamics, in a sense made precise. In this transformed MDP, the calculation of values is greatly simplified. The online algorithm estimates the model of the transformed MDP and simultaneously does policy search against it. Bounds on the error of this approximation are proven, and experimental results in a bicycle riding domain are presented. The algorithm learns near optimal policies in orders of magnitude fewer interactions with the stochastic MDP, using less domain knowledge. All code used in the experiments is available on the project's web site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robots must plan and execute tasks in the presence of uncertainty. Uncertainty arises from sensing errors, control errors, and uncertainty in the geometry of the environment. The last, which is called model error, has received little previous attention. We present a framework for computing motion strategies that are guaranteed to succeed in the presence of all three kinds of uncertainty. The motion strategies comprise sensor-based gross motions, compliant motions, and simple pushing motions.