3 resultados para Erden, Ali Fuad.
em Massachusetts Institute of Technology
Resumo:
Earlier, we introduced a direct method called fixation for the recovery of shape and motion in the general case. The method uses neither feature correspondence nor optical flow. Instead, it directly employs the spatiotemporal gradients of image brightness. This work reports the experimental results of applying some of our fixation algorithms to a sequence of real images where the motion is a combination of translation and rotation. These results show that parameters such as the fization patch size have crucial effects on the estimation of some motion parameters. Some of the critical issues involved in the implementaion of our autonomous motion vision system are also discussed here. Among those are the criteria for automatic choice of an optimum size for the fixation patch, and an appropriate location for the fixation point which result in good estimates for important motion parameters. Finally, a calibration method is described for identifying the real location of the rotation axis in imaging systems.
Resumo:
A typical robot vision scenario might involve a vehicle moving with an unknown 3D motion (translation and rotation) while taking intensity images of an arbitrary environment. This paper describes the theory and implementation issues of tracking any desired point in the environment. This method is performed completely in software without any need to mechanically move the camera relative to the vehicle. This tracking technique is simple an inexpensive. Furthermore, it does not use either optical flow or feature correspondence. Instead, the spatio-temporal gradients of the input intensity images are used directly. The experimental results presented support the idea of tracking in software. The final result is a sequence of tracked images where the desired point is kept stationary in the images independent of the nature of the relative motion. Finally, the quality of these tracked images are examined using spatio-temporal gradient maps.
Resumo:
In many motion-vision scenarios, a camera (mounted on a moving vehicle) takes images of an environment to find the "motion'' and shape. We introduce a direct-method called fixation for solving this motion-vision problem in its general case. Fixation uses neither feature-correspondence nor optical-flow. Instead, spatio-temporal brightness gradients are used directly. In contrast to previous direct methods, fixation does not restrict the motion or the environment. Moreover, fixation method neither requires tracked images as its input nor uses mechanical tracking for obtaining fixated images. The experimental results on real images are presented and the implementation issues and techniques are discussed.