1 resultado para Enthalpy-entropy Compensation
em Massachusetts Institute of Technology
Filtro por publicador
- Aberdeen University (1)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (52)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (35)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (33)
- Boston College Law School, Boston College (BC), United States (3)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- CentAUR: Central Archive University of Reading - UK (46)
- Central European University - Research Support Scheme (1)
- Cochin University of Science & Technology (CUSAT), India (9)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (6)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (47)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Archives@Colby (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons @ Winthrop University (2)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (7)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (5)
- DRUM (Digital Repository at the University of Maryland) (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (4)
- Harvard University (2)
- Institute of Public Health in Ireland, Ireland (2)
- Instituto Politécnico do Porto, Portugal (11)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (13)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (14)
- Publishing Network for Geoscientific & Environmental Data (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (11)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (63)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (24)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (18)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (2)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (33)
- Université de Montréal, Canada (5)
- University of Connecticut - USA (1)
- University of Michigan (416)
- University of Queensland eSpace - Australia (24)
- University of Southampton, United Kingdom (2)
Resumo:
We present a general framework for discriminative estimation based on the maximum entropy principle and its extensions. All calculations involve distributions over structures and/or parameters rather than specific settings and reduce to relative entropy projections. This holds even when the data is not separable within the chosen parametric class, in the context of anomaly detection rather than classification, or when the labels in the training set are uncertain or incomplete. Support vector machines are naturally subsumed under this class and we provide several extensions. We are also able to estimate exactly and efficiently discriminative distributions over tree structures of class-conditional models within this framework. Preliminary experimental results are indicative of the potential in these techniques.