9 resultados para Engineering, Industrial|Artificial Intelligence
em Massachusetts Institute of Technology
Resumo:
This report outlines the problem of intelligent failure recovery in a problem-solver for electrical design. We want our problem solver to learn as much as it can from its mistakes. Thus we cast the engineering design process on terms of Problem Solving by Debugging Almost-Right Plans, a paradigm for automatic problem solving based on the belief that creation and removal of "bugs" is an unavoidable part of the process of solving a complex problem. The process of localization and removal of bugs called for by the PSBDARP theory requires an approach to engineering analysis in which every result has a justification which describes the exact set of assumptions it depends upon. We have developed a program based on Analysis by Propagation of Constraints which can explain the basis of its deductions. In addition to being useful to a PSBDARP designer, these justifications are used in Dependency-Directed Backtracking to limit the combinatorial search in the analysis routines. Although the research we will describe is explicitly about electrical circuits, we believe that similar principles and methods are employed by other kinds of engineers, including computer programmers.
Resumo:
This report concentrates on progress during the last two years at the M.I.T. Artificial Intelligence Laboratory. Topics covered include the representation of knowledge, understanding English, learning and debugging, understanding vision and productivity technology. It is stressed that these various areas are tied closely together through certain fundamental issues and problems.
Resumo:
Most Artificial Intelligence (AI) work can be characterized as either ``high-level'' (e.g., logical, symbolic) or ``low-level'' (e.g., connectionist networks, behavior-based robotics). Each approach suffers from particular drawbacks. High-level AI uses abstractions that often have no relation to the way real, biological brains work. Low-level AI, on the other hand, tends to lack the powerful abstractions that are needed to express complex structures and relationships. I have tried to combine the best features of both approaches, by building a set of programming abstractions defined in terms of simple, biologically plausible components. At the ``ground level'', I define a primitive, perceptron-like computational unit. I then show how more abstract computational units may be implemented in terms of the primitive units, and show the utility of the abstract units in sample networks. The new units make it possible to build networks using concepts such as long-term memories, short-term memories, and frames. As a demonstration of these abstractions, I have implemented a simulator for ``creatures'' controlled by a network of abstract units. The creatures exist in a simple 2D world, and exhibit behaviors such as catching mobile prey and sorting colored blocks into matching boxes. This program demonstrates that it is possible to build systems that can interact effectively with a dynamic physical environment, yet use symbolic representations to control aspects of their behavior.
Resumo:
Computers and Thought are the two categories that together define Artificial Intelligence as a discipline. It is generally accepted that work in Artificial Intelligence over the last thirty years has had a strong influence on aspects of computer architectures. In this paper we also make the converse claim; that the state of computer architecture has been a strong influence on our models of thought. The Von Neumann model of computation has lead Artificial Intelligence in particular directions. Intelligence in biological systems is completely different. Recent work in behavior-based Artificial Intelligenge has produced new models of intelligence that are much closer in spirit to biological systems. The non-Von Neumann computational models they use share many characteristics with biological computation.
Resumo:
These proceedings summarize the results of the First PHANToM User's Group Workshop held September 27-30, 1996 MIT. The goal of the workshop was to bring together a group of active users of the PHANToM Haptic Interface to discuss the scientific and engineering challenges involved in bringing haptics into widespread use, and to explore the future possibilities of this exciting technology. With over 50 attendees and 25 presentations the workshop provided the first large forum for users of a common haptic interface to share results and engage in collaborative discussions. Short papers from the presenters are contained herein and address the following topics: Research Effort Overviews, Displays and Effects, Applications in Teleoperation and Training, Tools for Simulated Worlds and, Data Visualization.
Resumo:
In this report, I discuss the use of vision to support concrete, everyday activity. I will argue that a variety of interesting tasks can be solved using simple and inexpensive vision systems. I will provide a number of working examples in the form of a state-of-the-art mobile robot, Polly, which uses vision to give primitive tours of the seventh floor of the MIT AI Laboratory. By current standards, the robot has a broad behavioral repertoire and is both simple and inexpensive (the complete robot was built for less than $20,000 using commercial board-level components). The approach I will use will be to treat the structure of the agent's activity---its task and environment---as positive resources for the vision system designer. By performing a careful analysis of task and environment, the designer can determine a broad space of mechanisms which can perform the desired activity. My principal thesis is that for a broad range of activities, the space of applicable mechanisms will be broad enough to include a number mechanisms which are simple and economical. The simplest mechanisms that solve a given problem will typically be quite specialized to that problem. One thus worries that building simple vision systems will be require a great deal of {it ad-hoc} engineering that cannot be transferred to other problems. My second thesis is that specialized systems can be analyzed and understood in a principled manner, one that allows general lessons to be extracted from specialized systems. I will present a general approach to analyzing specialization through the use of transformations that provably improve performance. By demonstrating a sequence of transformations that derive a specialized system from a more general one, we can summarize the specialization of the former in a compact form that makes explicit the additional assumptions that it makes about its environment. The summary can be used to predict the performance of the system in novel environments. Individual transformations can be recycled in the design of future systems.
Resumo:
This report describes research about flow graphs - labeled, directed, acyclic graphs which abstract representations used in a variety of Artificial Intelligence applications. Flow graphs may be derived from flow grammars much as strings may be derived from string grammars; this derivation process forms a useful model for the stepwise refinement processes used in programming and other engineering domains. The central result of this report is a parsing algorithm for flow graphs. Given a flow grammar and a flow graph, the algorithm determines whether the grammar generates the graph and, if so, finds all possible derivations for it. The author has implemented the algorithm in LISP. The intent of this report is to make flow-graph parsing available as an analytic tool for researchers in Artificial Intelligence. The report explores the intuitions behind the parsing algorithm, contains numerous, extensive examples of its behavior, and provides some guidance for those who wish to customize the algorithm to their own uses.
Resumo:
Artificial Intelligence research involves the creation of extremely complex programs which must possess the capability to introspect, learn, and improve their expertise. Any truly intelligent program must be able to create procedures and to modify them as it gathers information from its experience. [Sussman, 1975] produced such a system for a 'mini-world'; but truly intelligent programs must be considerably more complex. A crucial stepping stone in AI research is the development of a system which can understand complex programs well enough to modify them. There is also a complexity barrier in the world of commercial software which is making the cost of software production and maintenance prohibitive. Here too a system which is capable of understanding complex programs is a necessary step. The Programmer's Apprentice Project [Rich and Shrobe, 76] is attempting to develop an interactive programming tool which will help expert programmers deal with the complexity involved in engineering a large software system. This report describes REASON, the deductive component of the programmer's apprentice. REASON is intended to help expert programmers in the process of evolutionary program design. REASON utilizes the engineering techniques of modelling, decomposition, and analysis by inspection to determine how modules interact to achieve the desired overall behavior of a program. REASON coordinates its various sources of knowledge by using a dependency-directed structure which records the justification for each deduction it makes. Once a program has been analyzed these justifications can be summarized into a teleological structure called a plan which helps the system understand the impact of a proposed program modification.
Resumo:
The work reported here lies in the area of overlap between artificial intelligence software engineering. As research in artificial intelligence, it is a step towards a model of problem solving in the domain of programming. In particular, this work focuses on the routine aspects of programming which involve the application of previous experience with similar programs. I call this programming by inspection. Programming is viewed here as a kind of engineering activity. Analysis and synthesis by inspection area prominent part of expert problem solving in many other engineering disciplines, such as electrical and mechanical engineering. The notion of inspections methods in programming developed in this work is motivated by similar notions in other areas of engineering. This work is also motivated by current practical concerns in the area of software engineering. The inadequacy of current programming technology is universally recognized. Part of the solution to this problem will be to increase the level of automation in programming. I believe that the next major step in the evolution of more automated programming will be interactive systems which provide a mixture of partially automated program analysis, synthesis and verification. One such system being developed at MIT, called the programmer's apprentice, is the immediate intended application of this work. This report concentrates on the knowledge are of the programmer's apprentice, which is the form of a taxonomy of commonly used algorithms and data structures. To the extent that a programmer is able to construct and manipulate programs in terms of the forms in such a taxonomy, he may relieve himself of many details and generally raise the conceptual level of his interaction with the system, as compared with present day programming environments. Also, since it is practical to expand a great deal of effort pre-analyzing the entries in a library, the difficulty of verifying the correctness of programs constructed this way is correspondingly reduced. The feasibility of this approach is demonstrated by the design of an initial library of common techniques for manipulating symbolic data. This document also reports on the further development of a formalism called the plan calculus for specifying computations in a programming language independent manner. This formalism combines both data and control abstraction in a uniform framework that has facilities for representing multiple points of view and side effects.