1 resultado para Energy consumption data sets
em Massachusetts Institute of Technology
Filtro por publicador
- JISC Information Environment Repository (1)
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Aquatic Commons (12)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (10)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (7)
- Aston University Research Archive (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (10)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (5)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (24)
- Boston University Digital Common (4)
- Brock University, Canada (2)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (26)
- CentAUR: Central Archive University of Reading - UK (125)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (7)
- Cochin University of Science & Technology (CUSAT), India (8)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (6)
- CORA - Cork Open Research Archive - University College Cork - Ireland (12)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (9)
- Digital Commons - Michigan Tech (5)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (4)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (10)
- Indian Institute of Science - Bangalore - Índia (63)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (38)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (2)
- Open University Netherlands (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- Publishing Network for Geoscientific & Environmental Data (19)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (52)
- Queensland University of Technology - ePrints Archive (120)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (7)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (6)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (24)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- Scielo España (1)
- South Carolina State Documents Depository (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (2)
- Universidad de Alicante (3)
- Universidad Politécnica de Madrid (43)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (8)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (1)
- University of Connecticut - USA (1)
- University of Michigan (16)
- University of Queensland eSpace - Australia (6)
- University of Southampton, United Kingdom (2)
- University of Washington (2)
- WestminsterResearch - UK (10)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Real-world learning tasks often involve high-dimensional data sets with complex patterns of missing features. In this paper we review the problem of learning from incomplete data from two statistical perspectives---the likelihood-based and the Bayesian. The goal is two-fold: to place current neural network approaches to missing data within a statistical framework, and to describe a set of algorithms, derived from the likelihood-based framework, that handle clustering, classification, and function approximation from incomplete data in a principled and efficient manner. These algorithms are based on mixture modeling and make two distinct appeals to the Expectation-Maximization (EM) principle (Dempster, Laird, and Rubin 1977)---both for the estimation of mixture components and for coping with the missing data.