4 resultados para Enantioselective Michael addition
em Massachusetts Institute of Technology
Resumo:
The Expectation-Maximization (EM) algorithm is an iterative approach to maximum likelihood parameter estimation. Jordan and Jacobs (1993) recently proposed an EM algorithm for the mixture of experts architecture of Jacobs, Jordan, Nowlan and Hinton (1991) and the hierarchical mixture of experts architecture of Jordan and Jacobs (1992). They showed empirically that the EM algorithm for these architectures yields significantly faster convergence than gradient ascent. In the current paper we provide a theoretical analysis of this algorithm. We show that the algorithm can be regarded as a variable metric algorithm with its searching direction having a positive projection on the gradient of the log likelihood. We also analyze the convergence of the algorithm and provide an explicit expression for the convergence rate. In addition, we describe an acceleration technique that yields a significant speedup in simulation experiments.
Resumo:
This thesis describes a system that synthesizes regularity exposing attributes from large protein databases. After processing primary and secondary structure data, this system discovers an amino acid representation that captures what are thought to be the three most important amino acid characteristics (size, charge, and hydrophobicity) for tertiary structure prediction. A neural network trained using this 16 bit representation achieves a performance accuracy on the secondary structure prediction problem that is comparable to the one achieved by a neural network trained using the standard 24 bit amino acid representation. In addition, the thesis describes bounds on secondary structure prediction accuracy, derived using an optimal learning algorithm and the probably approximately correct (PAC) model.
Resumo:
We describe a method for modeling object classes (such as faces) using 2D example images and an algorithm for matching a model to a novel image. The object class models are "learned'' from example images that we call prototypes. In addition to the images, the pixelwise correspondences between a reference prototype and each of the other prototypes must also be provided. Thus a model consists of a linear combination of prototypical shapes and textures. A stochastic gradient descent algorithm is used to match a model to a novel image by minimizing the error between the model and the novel image. Example models are shown as well as example matches to novel images. The robustness of the matching algorithm is also evaluated. The technique can be used for a number of applications including the computation of correspondence between novel images of a certain known class, object recognition, image synthesis and image compression.
Resumo:
It is proposed that subjective contours are an artifact of the perception of natural three-dimensional surfaces. A recent theory of surface interpolation implies that "subjective surfaces" are constructed in the visual system by interpolation between three-dimensional values arising from interpretation of a variety of surface cues. We show that subjective surfaces can take any form, including singly and doubly curved surfaces, as well as the commonly discussed fronto-parallel planes. In addition, it is necessary in the context of computational vision to make explicit the discontinuities, both in depth and in surface orientation, in the surfaces constructed by interpolation. It is proposed that subjective surfaces and subjective contours are demonstrated. The role played by figure completion and enhanced brightness contrast in the determination of subjective surfaces is discussed. All considerations of surface perception apply equally to subjective surfaces.