1 resultado para Empirical orthogonal functions
em Massachusetts Institute of Technology
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Aston University Research Archive (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (43)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (5)
- Biodiversity Heritage Library, United States (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (9)
- Bulgarian Digital Mathematics Library at IMI-BAS (6)
- CentAUR: Central Archive University of Reading - UK (34)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (10)
- Cochin University of Science & Technology (CUSAT), India (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (214)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (4)
- DigitalCommons - The University of Maine Research (9)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (140)
- DRUM (Digital Repository at the University of Maryland) (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Glasgow Theses Service (1)
- Institute of Public Health in Ireland, Ireland (2)
- Instituto Politécnico do Porto, Portugal (26)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (11)
- Martin Luther Universitat Halle Wittenberg, Germany (8)
- Massachusetts Institute of Technology (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (11)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (17)
- Repositório da Produção Científica e Intelectual da Unicamp (6)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (37)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (37)
- Scielo Saúde Pública - SP (35)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (12)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (4)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (10)
- Universidade dos Açores - Portugal (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (6)
- Université de Lausanne, Switzerland (173)
- Université de Montréal (1)
- Université de Montréal, Canada (5)
- University of Michigan (1)
- University of Queensland eSpace - Australia (64)
Resumo:
We formulate density estimation as an inverse operator problem. We then use convergence results of empirical distribution functions to true distribution functions to develop an algorithm for multivariate density estimation. The algorithm is based upon a Support Vector Machine (SVM) approach to solving inverse operator problems. The algorithm is implemented and tested on simulated data from different distributions and different dimensionalities, gaussians and laplacians in $R^2$ and $R^{12}$. A comparison in performance is made with Gaussian Mixture Models (GMMs). Our algorithm does as well or better than the GMMs for the simulations tested and has the added advantage of being automated with respect to parameters.