1 resultado para Empirical Bayes Methods
em Massachusetts Institute of Technology
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (1)
- Aston University Research Archive (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (14)
- Brunel University (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (7)
- Cambridge University Engineering Department Publications Database (4)
- CentAUR: Central Archive University of Reading - UK (15)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (4)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (4)
- Collection Of Biostatistics Research Archive (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- Dalarna University College Electronic Archive (8)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (9)
- DigitalCommons@The Texas Medical Center (4)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (4)
- Düsseldorfer Dokumenten- und Publikationsservice (2)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (9)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Indian Institute of Science - Bangalore - Índia (8)
- Institutional Repository of Leibniz University Hannover (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- Nottingham eTheses (1)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (15)
- Queensland University of Technology - ePrints Archive (734)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (6)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (3)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universidade Técnica de Lisboa (2)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (4)
- University of Michigan (1)
- University of Queensland eSpace - Australia (10)
- University of Southampton, United Kingdom (1)
- WestminsterResearch - UK (2)
Resumo:
Explanation-based Generalization requires that the learner obtain an explanation of why a precedent exemplifies a concept. It is, therefore, useless if the system fails to find this explanation. However, it is not necessary to give up and resort to purely empirical generalization methods. In fact, the system may already know almost everything it needs to explain the precedent. Learning by Failing to Explain is a method which is able to exploit current knowledge to prune complex precedents, isolating the mysterious parts of the precedent. The idea has two parts: the notion of partially analyzing a precedent to get rid of the parts which are already explainable, and the notion of re-analyzing old rules in terms of new ones, so that more general rules are obtained.