2 resultados para Empirical Approach

em Massachusetts Institute of Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research in mobile ad-hoc networks has focused on situations in which nodes have no control over their movements. We investigate an important but overlooked domain in which nodes do have control over their movements. Reinforcement learning methods can be used to control both packet routing decisions and node mobility, dramatically improving the connectivity of the network. We first motivate the problem by presenting theoretical bounds for the connectivity improvement of partially mobile networks and then present superior empirical results under a variety of different scenarios in which the mobile nodes in our ad-hoc network are embedded with adaptive routing policies and learned movement policies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We formulate density estimation as an inverse operator problem. We then use convergence results of empirical distribution functions to true distribution functions to develop an algorithm for multivariate density estimation. The algorithm is based upon a Support Vector Machine (SVM) approach to solving inverse operator problems. The algorithm is implemented and tested on simulated data from different distributions and different dimensionalities, gaussians and laplacians in $R^2$ and $R^{12}$. A comparison in performance is made with Gaussian Mixture Models (GMMs). Our algorithm does as well or better than the GMMs for the simulations tested and has the added advantage of being automated with respect to parameters.