4 resultados para Emotional Processing Model

em Massachusetts Institute of Technology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Euterpe is a real-time computer system for the modeling of musical structures. It provides a formalism wherein familiar concepts of musical analysis may be readily expressed. This is verified by its application to the analysis of a wide variety of conventional forms of music: Gregorian chant, Mediaeval polyphony, Back counterpoint, and sonata form. It may be of further assistance in the real-time experiments in various techniques of thematic development. Finally, the system is endowed with sound-synthesis apparatus with which the user may prepare tapes for musical performances.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a model for the general flow in the neocortex. The basic process, called "sequence-seeking," is a search for a sequence of mappings or transformations, linking source and target representations. The search is bi-directional, "bottom-up" as well as "top-down," and it explores in parallel a large numbe rof alternative sequences. This operation is implemented in a structure termed "counter streams," in which multiple sequences are explored along two separate, complementary pathways which seeking to meet. The first part of the paper discusses the general sequence-seeking scheme and a number of related processes, such as the learning of successful sequences, context effects, and the use of "express lines" and partial matches. The second part discusses biological implications of the model in terms of connections within and between cortical areas. The model is compared with existing data, and a number of new predictions are proposed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Understanding how the human visual system recognizes objects is one of the key challenges in neuroscience. Inspired by a large body of physiological evidence (Felleman and Van Essen, 1991; Hubel and Wiesel, 1962; Livingstone and Hubel, 1988; Tso et al., 2001; Zeki, 1993), a general class of recognition models has emerged which is based on a hierarchical organization of visual processing, with succeeding stages being sensitive to image features of increasing complexity (Hummel and Biederman, 1992; Riesenhuber and Poggio, 1999; Selfridge, 1959). However, these models appear to be incompatible with some well-known psychophysical results. Prominent among these are experiments investigating recognition impairments caused by vertical inversion of images, especially those of faces. It has been reported that faces that differ "featurally" are much easier to distinguish when inverted than those that differ "configurally" (Freire et al., 2000; Le Grand et al., 2001; Mondloch et al., 2002) ??finding that is difficult to reconcile with the aforementioned models. Here we show that after controlling for subjects' expectations, there is no difference between "featurally" and "configurally" transformed faces in terms of inversion effect. This result reinforces the plausibility of simple hierarchical models of object representation and recognition in cortex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The visual recognition of complex movements and actions is crucial for communication and survival in many species. Remarkable sensitivity and robustness of biological motion perception have been demonstrated in psychophysical experiments. In recent years, neurons and cortical areas involved in action recognition have been identified in neurophysiological and imaging studies. However, the detailed neural mechanisms that underlie the recognition of such complex movement patterns remain largely unknown. This paper reviews the experimental results and summarizes them in terms of a biologically plausible neural model. The model is based on the key assumption that action recognition is based on learned prototypical patterns and exploits information from the ventral and the dorsal pathway. The model makes specific predictions that motivate new experiments.