1 resultado para Electric Car
em Massachusetts Institute of Technology
Filtro por publicador
- Repository Napier (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Applied Math and Science Education Repository - Washington - USA (2)
- Aquatic Commons (7)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (6)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (1)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (12)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (15)
- Brock University, Canada (15)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (9)
- Cambridge University Engineering Department Publications Database (55)
- CentAUR: Central Archive University of Reading - UK (34)
- Center for Jewish History Digital Collections (20)
- Chapman University Digital Commons - CA - USA (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (114)
- Cochin University of Science & Technology (CUSAT), India (5)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (32)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Cornell: DigitalCommons@ILR (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (2)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (7)
- Digital Commons - Montana Tech (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (4)
- DRUM (Digital Repository at the University of Maryland) (2)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (6)
- Greenwich Academic Literature Archive - UK (9)
- Harvard University (3)
- Helda - Digital Repository of University of Helsinki (3)
- Indian Institute of Science - Bangalore - Índia (102)
- Infoteca EMBRAPA (1)
- Instituto Politécnico do Porto, Portugal (9)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (18)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (9)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (87)
- Queensland University of Technology - ePrints Archive (136)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (6)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (117)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (3)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (4)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (3)
- University of Michigan (3)
- WestminsterResearch - UK (1)
Resumo:
This paper describes a general, trainable architecture for object detection that has previously been applied to face and peoplesdetection with a new application to car detection in static images. Our technique is a learning based approach that uses a set of labeled training data from which an implicit model of an object class -- here, cars -- is learned. Instead of pixel representations that may be noisy and therefore not provide a compact representation for learning, our training images are transformed from pixel space to that of Haar wavelets that respond to local, oriented, multiscale intensity differences. These feature vectors are then used to train a support vector machine classifier. The detection of cars in images is an important step in applications such as traffic monitoring, driver assistance systems, and surveillance, among others. We show several examples of car detection on out-of-sample images and show an ROC curve that highlights the performance of our system.