1 resultado para Eigenvalues.
em Massachusetts Institute of Technology
Filtro por publicador
- Aberdeen University (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Aston University Research Archive (12)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital - Universidad Icesi - Colombia (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (28)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (13)
- Brock University, Canada (1)
- Brunel University (1)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (8)
- CentAUR: Central Archive University of Reading - UK (30)
- Cochin University of Science & Technology (CUSAT), India (5)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (15)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (2)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (3)
- DRUM (Digital Repository at the University of Maryland) (3)
- Glasgow Theses Service (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (4)
- Nottingham eTheses (1)
- Publishing Network for Geoscientific & Environmental Data (6)
- QSpace: Queen's University - Canada (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (13)
- Repositório Institucional da Universidade de Aveiro - Portugal (5)
- Repositório Institucional da Universidade de Brasília (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (105)
- Repositorio Institucional Universidad de Medellín (1)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Scielo Saúde Pública - SP (5)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (9)
- Universidade do Minho (3)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (12)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (1)
- Université de Montréal, Canada (13)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (4)
- University of Queensland eSpace - Australia (33)
- University of Southampton, United Kingdom (33)
Resumo:
We investigate the properties of feedforward neural networks trained with Hebbian learning algorithms. A new unsupervised algorithm is proposed which produces statistically uncorrelated outputs. The algorithm causes the weights of the network to converge to the eigenvectors of the input correlation with largest eigenvalues. The algorithm is closely related to the technique of Self-supervised Backpropagation, as well as other algorithms for unsupervised learning. Applications of the algorithm to texture processing, image coding, and stereo depth edge detection are given. We show that the algorithm can lead to the development of filters qualitatively similar to those found in primate visual cortex.