1 resultado para Effect Analysis
em Massachusetts Institute of Technology
Filtro por publicador
- Aberdeen University (2)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (17)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (16)
- Aston University Research Archive (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (17)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (6)
- Cambridge University Engineering Department Publications Database (28)
- CentAUR: Central Archive University of Reading - UK (6)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (70)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (1)
- DigitalCommons@The Texas Medical Center (3)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (9)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (18)
- Indian Institute of Science - Bangalore - Índia (270)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (8)
- Nottingham eTheses (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (44)
- Queensland University of Technology - ePrints Archive (279)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (51)
- Repositorio Institucional Universidad de Medellín (1)
- School of Medicine, Washington University, United States (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (9)
- Universidade Complutense de Madrid (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Université de Montréal, Canada (3)
- University of Connecticut - USA (1)
- University of Michigan (8)
- University of Queensland eSpace - Australia (13)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
Object recognition is complicated by clutter, occlusion, and sensor error. Since pose hypotheses are based on image feature locations, these effects can lead to false negatives and positives. In a typical recognition algorithm, pose hypotheses are tested against the image, and a score is assigned to each hypothesis. We use a statistical model to determine the score distribution associated with correct and incorrect pose hypotheses, and use binary hypothesis testing techniques to distinguish between them. Using this approach we can compare algorithms and noise models, and automatically choose values for internal system thresholds to minimize the probability of making a mistake.