1 resultado para ETL Conceptual and Logical Modeling
em Massachusetts Institute of Technology
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Stockholm University; Sweden) (2)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (12)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (6)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (3)
- Aston University Research Archive (25)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (36)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (34)
- Brock University, Canada (5)
- Bucknell University Digital Commons - Pensilvania - USA (6)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CaltechTHESIS (2)
- CentAUR: Central Archive University of Reading - UK (57)
- Central European University - Research Support Scheme (1)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (5)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (20)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (23)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- CUNY Academic Works (4)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (12)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (16)
- Digital Peer Publishing (2)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (38)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (3)
- Earth Simulator Research Results Repository (2)
- Ecology and Society (4)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (3)
- Institutional Repository of Leibniz University Hannover (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (2)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico do Porto, Portugal (15)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (4)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (11)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (20)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório da Produção Científica e Intelectual da Unicamp (4)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (11)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (138)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (15)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Saúde Pública - SP (22)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (22)
- Universidad Politécnica de Madrid (20)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (17)
- Universidade dos Açores - Portugal (2)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (12)
- Universidade Federal do Rio Grande do Norte (UFRN) (28)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (60)
- Université de Montréal, Canada (31)
- University of Connecticut - USA (1)
- University of Michigan (8)
- University of Queensland eSpace - Australia (36)
- University of Southampton, United Kingdom (1)
- University of Washington (8)
- WestminsterResearch - UK (1)
Resumo:
Biological systems exhibit rich and complex behavior through the orchestrated interplay of a large array of components. It is hypothesized that separable subsystems with some degree of functional autonomy exist; deciphering their independent behavior and functionality would greatly facilitate understanding the system as a whole. Discovering and analyzing such subsystems are hence pivotal problems in the quest to gain a quantitative understanding of complex biological systems. In this work, using approaches from machine learning, physics and graph theory, methods for the identification and analysis of such subsystems were developed. A novel methodology, based on a recent machine learning algorithm known as non-negative matrix factorization (NMF), was developed to discover such subsystems in a set of large-scale gene expression data. This set of subsystems was then used to predict functional relationships between genes, and this approach was shown to score significantly higher than conventional methods when benchmarking them against existing databases. Moreover, a mathematical treatment was developed to treat simple network subsystems based only on their topology (independent of particular parameter values). Application to a problem of experimental interest demonstrated the need for extentions to the conventional model to fully explain the experimental data. Finally, the notion of a subsystem was evaluated from a topological perspective. A number of different protein networks were examined to analyze their topological properties with respect to separability, seeking to find separable subsystems. These networks were shown to exhibit separability in a nonintuitive fashion, while the separable subsystems were of strong biological significance. It was demonstrated that the separability property found was not due to incomplete or biased data, but is likely to reflect biological structure.