5 resultados para Drive Components.

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The image of an object can vary dramatically depending on lighting, specularities/reflections and shadows. It is often advantageous to separate these incidental variations from the intrinsic aspects of an image. Along these lines this paper describes a method for photographing objects behind glass and digitally removing the reflections off the glass leaving the image of the objects behind the glass intact. We describe the details of this method which employs simple optical techniques and independent components analysis (ICA) and show its efficacy with several examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In my research, I have performed an extensive experimental investigation of harmonic-drive properties such as stiffness, friction, and kinematic error. From my experimental results, I have found that these properties can be sharply non-linear and highly dependent on operating conditions. Due to the complex interaction of these poorly behaved transmission properties, dynamic response measurements showed surprisingly agitated behavior, especially around system resonance. Theoretical models developed to mimic the observed response illustrated that non-linear frictional effects cannot be ignored in any accurate harmonic-drive representation. Additionally, if behavior around system resonance must be replicated, kinematic error and transmission compliance as well as frictional dissipation from gear-tooth rubbing must all be incorporated into the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis details the development of a model of a seven degree of freedom manipulator for position control. Then, it goes on to discuss the design and construction of a the PHD, a robot built to serve two purposes: first, to perform research on joint torque control schemes, and second, to determine the important dynamic characteristics of the Harmonic Drive. The PHD, is a planar, three degree of freedom arm with torque sensors integral to each joint. Preliminary testing has shown that a simple linear spring model of the Harmonic Drive's flexibility is suitable in many situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a component based person detection system that is capable of detecting frontal, rear and near side views of people, and partially occluded persons in cluttered scenes. The framework that is described here for people is easily applied to other objects as well. The motivation for developing a component based approach is two fold: first, to enhance the performance of person detection systems on frontal and rear views of people and second, to develop a framework that directly addresses the problem of detecting people who are partially occluded or whose body parts blend in with the background. The data classification is handled by several support vector machine classifiers arranged in two layers. This architecture is known as Adaptive Combination of Classifiers (ACC). The system performs very well and is capable of detecting people even when all components of a person are not found. The performance of the system is significantly better than a full body person detector designed along similar lines. This suggests that the improved performance is due to the components based approach and the ACC data classification structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the MIT Serial Link Direct Drive Arm as the main experimental device, various issues in trajectory and force control of manipulators were studied in this thesis. Since accurate modeling is important for any controller, issues of estimating the dynamic model of a manipulator and its load were addressed first. Practical and effective algorithms were developed fro the Newton-Euler equations to estimate the inertial parameters of manipulator rigid-body loads and links. Load estimation was implemented both on PUMA 600 robot and on the MIT Serial Link Direct Drive Arm. With the link estimation algorithm, the inertial parameters of the direct drive arm were obtained. For both load and link estimation results, the estimated parameters are good models of the actual system for control purposes since torques and forces can be predicted accurately from these estimated parameters. The estimated model of the direct drive arm was them used to evaluate trajectory following performance by feedforward and computed torque control algorithms. The experimental evaluations showed that the dynamic compensation can greatly improve trajectory following accuracy. Various stability issues of force control were studied next. It was determined that there are two types of instability in force control. Dynamic instability, present in all of the previous force control algorithms discussed in this thesis, is caused by the interaction of a manipulator with a stiff environment. Kinematics instability is present only in the hybrid control algorithm of Raibert and Craig, and is caused by the interaction of the inertia matrix with the Jacobian inverse coordinate transformation in the feedback path. Several methods were suggested and demonstrated experimentally to solve these stability problems. The result of the stability analyses were then incorporated in implementing a stable force/position controller on the direct drive arm by the modified resolved acceleration method using both joint torque and wrist force sensor feedbacks.