1 resultado para Domains
em Massachusetts Institute of Technology
Filtro por publicador
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (5)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (19)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (11)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (25)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (30)
- CentAUR: Central Archive University of Reading - UK (24)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (21)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (3)
- DigitalCommons@The Texas Medical Center (13)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (6)
- Düsseldorfer Dokumenten- und Publikationsservice (1)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (7)
- Indian Institute of Science - Bangalore - Índia (42)
- Instituto Gulbenkian de Ciência (2)
- Instituto Politécnico de Castelo Branco - Portugal (1)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (148)
- Nottingham eTheses (2)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (52)
- Queensland University of Technology - ePrints Archive (410)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (13)
- Repositorio Institucional Universidad de Medellín (1)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- School of Medicine, Washington University, United States (1)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (9)
- Universidade Complutense de Madrid (4)
- Universidade Federal do Pará (1)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (3)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Queensland eSpace - Australia (26)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
We present an immersed interface method for the incompressible Navier Stokes equations capable of handling rigid immersed boundaries. The immersed boundary is represented by a set of Lagrangian control points. In order to guarantee that the no-slip condition on the boundary is satisfied, singular forces are applied on the fluid at the immersed boundary. The forces are related to the jumps in pressure and the jumps in the derivatives of both pressure and velocity, and are interpolated using cubic splines. The strength of singular forces is determined by solving a small system of equations at each time step. The Navier-Stokes equations are discretized on a staggered Cartesian grid by a second order accurate projection method for pressure and velocity.